Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386913726> ?p ?o ?g. }
- W4386913726 endingPage "108940" @default.
- W4386913726 startingPage "108940" @default.
- W4386913726 abstract "Machine learning has emerged as a promising paradigm to study the quantum dissipative dynamics of open quantum systems. To facilitate the use of our recently published ML-based approaches for quantum dissipative dynamics, here we present an open-source Python package MLQD (https://github.com/Arif-PhyChem/MLQD), which currently supports the three ML-based quantum dynamics approaches: (1) the recursive dynamics with kernel ridge regression (KRR) method, (2) the non-recursive artificial-intelligence-based quantum dynamics (AIQD) approach and (3) the blazingly fast one-shot trajectory learning (OSTL) approach, where both AIQD and OSTL use the convolutional neural networks (CNN). This paper describes the features of the MLQD package, the technical details, optimization of hyperparameters, visualization of results, and the demonstration of the MLQD's applicability for two widely studied systems, namely the spin-boson model and the Fenna–Matthews–Olson (FMO) complex. To make MLQD more user-friendly and accessible, we have made it available on the Python Package Index (PyPi) platform and it can be installed via . In addition, it is also available on the XACS cloud computing platform (https://XACScloud.com) via the interface to the MLatom package (http://MLatom.com). Program Title: MLQD CPC Library link to program files: https://doi.org/10.17632/yxp37csy5x.1 Developer's repository link: https://github.com/Arif-PhyChem/MLQD Code Ocean capsule: https://codeocean.com/capsule/5563143/tree Licensing provisions: Apache Software License 2.0 Programming language: Python 3.0 Supplementary material: Jupyter Notebook-based tutorials External routines/libraries: Tensorflow, Scikit-learn, Hyperopt, Matplotlib, MLatom Nature of problem: Fast propagation of quantum dissipative dynamics with machine learning approaches. Solution method: We have developed MLQD as a comprehensive framework that streamlines and supports the implementation of our recently published machine learning-based approaches for efficient propagation of quantum dissipative dynamics. This framework encompasses: (1) the recursive dynamics with kernel ridge regression (KRR) method, as well as the non-recursive approaches utilizing convolutional neural networks (CNN), namely (2) artificial intelligence-based quantum dynamics (AIQD), and (3) one-shot trajectory learning (OSTL). Additional comments including restrictions and unusual features: Users can train a machine learning (ML) model following one of the ML-based approaches: KRR, AIQD and OSTL. Users have the option to propagate dynamics with the existing trained ML models. MLQD also provides the transformation of trajectories into the training data. MLQD also supports hyperparameter optimization using MLATOM's grid search functionality for KRR and Bayesian methods with Tree-structured Parzen Estimator (TPE) for CNN models via the HYPEROPT package. MLQD also facilitates the visualization of results via auto-plotting. MLQD is designed to be user-friendly and easily accessible, with availability on the XACS cloud computing platform (https://XACScloud.com) via the interface to the MLATOM package (http://MLatom.com). In addition, it is also available as a pip package which makes it easy to install." @default.
- W4386913726 created "2023-09-22" @default.
- W4386913726 creator A5063208299 @default.
- W4386913726 creator A5063240098 @default.
- W4386913726 date "2024-01-01" @default.
- W4386913726 modified "2023-10-12" @default.
- W4386913726 title "MLQD: A package for machine learning-based quantum dissipative dynamics" @default.
- W4386913726 cites W1848263441 @default.
- W4386913726 cites W1967045838 @default.
- W4386913726 cites W1971551821 @default.
- W4386913726 cites W1975391438 @default.
- W4386913726 cites W1982972906 @default.
- W4386913726 cites W1988719923 @default.
- W4386913726 cites W1995318398 @default.
- W4386913726 cites W2001228707 @default.
- W4386913726 cites W2003196873 @default.
- W4386913726 cites W2004976239 @default.
- W4386913726 cites W2007593774 @default.
- W4386913726 cites W2009433935 @default.
- W4386913726 cites W2011745830 @default.
- W4386913726 cites W2013805276 @default.
- W4386913726 cites W2030057222 @default.
- W4386913726 cites W2030246366 @default.
- W4386913726 cites W2031290185 @default.
- W4386913726 cites W2052932598 @default.
- W4386913726 cites W2059343391 @default.
- W4386913726 cites W2063785360 @default.
- W4386913726 cites W2069207980 @default.
- W4386913726 cites W2073034190 @default.
- W4386913726 cites W2076976740 @default.
- W4386913726 cites W2078294955 @default.
- W4386913726 cites W2083590256 @default.
- W4386913726 cites W2090062662 @default.
- W4386913726 cites W2099265531 @default.
- W4386913726 cites W2103496339 @default.
- W4386913726 cites W2113370618 @default.
- W4386913726 cites W2116059612 @default.
- W4386913726 cites W2118492081 @default.
- W4386913726 cites W2121740733 @default.
- W4386913726 cites W2122404627 @default.
- W4386913726 cites W2125410420 @default.
- W4386913726 cites W2126916397 @default.
- W4386913726 cites W2130860507 @default.
- W4386913726 cites W2137983211 @default.
- W4386913726 cites W2154815292 @default.
- W4386913726 cites W2162328638 @default.
- W4386913726 cites W2314969497 @default.
- W4386913726 cites W2346711399 @default.
- W4386913726 cites W2470522861 @default.
- W4386913726 cites W2508807257 @default.
- W4386913726 cites W2553447428 @default.
- W4386913726 cites W2562713819 @default.
- W4386913726 cites W2737127163 @default.
- W4386913726 cites W2803260581 @default.
- W4386913726 cites W2893069251 @default.
- W4386913726 cites W2904199357 @default.
- W4386913726 cites W2914465168 @default.
- W4386913726 cites W2951348146 @default.
- W4386913726 cites W2951646322 @default.
- W4386913726 cites W2970504131 @default.
- W4386913726 cites W2995439361 @default.
- W4386913726 cites W3015875284 @default.
- W4386913726 cites W3024894746 @default.
- W4386913726 cites W3033961954 @default.
- W4386913726 cites W3080540369 @default.
- W4386913726 cites W3099312049 @default.
- W4386913726 cites W3099964320 @default.
- W4386913726 cites W3101005742 @default.
- W4386913726 cites W3101257239 @default.
- W4386913726 cites W3102237945 @default.
- W4386913726 cites W3102953496 @default.
- W4386913726 cites W3104403078 @default.
- W4386913726 cites W3106418662 @default.
- W4386913726 cites W3120740061 @default.
- W4386913726 cites W3125537303 @default.
- W4386913726 cites W3133983161 @default.
- W4386913726 cites W3144065698 @default.
- W4386913726 cites W3184128146 @default.
- W4386913726 cites W3204256293 @default.
- W4386913726 cites W3210737842 @default.
- W4386913726 cites W3214240156 @default.
- W4386913726 cites W3217781211 @default.
- W4386913726 cites W4200336260 @default.
- W4386913726 cites W4223485577 @default.
- W4386913726 cites W4226332502 @default.
- W4386913726 cites W4280535729 @default.
- W4386913726 cites W4283396843 @default.
- W4386913726 cites W4294786469 @default.
- W4386913726 cites W4307840694 @default.
- W4386913726 cites W4311349142 @default.
- W4386913726 cites W4385546210 @default.
- W4386913726 cites W4385622366 @default.
- W4386913726 cites W607853484 @default.
- W4386913726 doi "https://doi.org/10.1016/j.cpc.2023.108940" @default.
- W4386913726 hasPublicationYear "2024" @default.
- W4386913726 type Work @default.
- W4386913726 citedByCount "0" @default.
- W4386913726 crossrefType "journal-article" @default.