Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386917923> ?p ?o ?g. }
- W4386917923 endingPage "3013" @default.
- W4386917923 startingPage "3013" @default.
- W4386917923 abstract "High-resolution intraoperative PET/CT specimen imaging, coupled with prostate-specific membrane antigen (PSMA) molecular targeting, holds great potential for the rapid ex vivo identification of disease localizations in high-risk prostate cancer patients undergoing surgery. However, the accurate analysis of radiotracer uptake would require time-consuming manual volumetric segmentation of 3D images. The aim of this study was to test the feasibility of using machine learning to perform automatic nodal segmentation of intraoperative 68Ga-PSMA-11 PET/CT specimen images. Six (n = 6) lymph-nodal specimens were imaged in the operating room after an e.v. injection of 2.1 MBq/kg of 68Ga-PSMA-11. A machine learning-based approach for automatic lymph-nodal segmentation was developed using only open-source Python libraries (Scikit-learn, SciPy, Scikit-image). The implementation of a k-means clustering algorithm (n = 3 clusters) allowed to identify lymph-nodal structures by leveraging differences in tissue density. Refinement of the segmentation masks was performed using morphological operations and 2D/3D-features filtering. Compared to manual segmentation (ITK-SNAP v4.0.1), the automatic segmentation model showed promising results in terms of weighted average precision (97-99%), recall (68-81%), Dice coefficient (80-88%) and Jaccard index (67-79%). Finally, the ML-based segmentation masks allowed to automatically compute semi-quantitative PET metrics (i.e., SUVmax), thus holding promise for facilitating the semi-quantitative analysis of PET/CT images in the operating room." @default.
- W4386917923 created "2023-09-22" @default.
- W4386917923 creator A5005040366 @default.
- W4386917923 creator A5030019301 @default.
- W4386917923 creator A5049341838 @default.
- W4386917923 creator A5064660795 @default.
- W4386917923 creator A5067669304 @default.
- W4386917923 creator A5086670362 @default.
- W4386917923 creator A5087781254 @default.
- W4386917923 creator A5088154061 @default.
- W4386917923 date "2023-09-21" @default.
- W4386917923 modified "2023-10-17" @default.
- W4386917923 title "Machine Learning CT-Based Automatic Nodal Segmentation and PET Semi-Quantification of Intraoperative 68Ga-PSMA-11 PET/CT Images in High-Risk Prostate Cancer: A Pilot Study" @default.
- W4386917923 cites W1900676315 @default.
- W4386917923 cites W2043601120 @default.
- W4386917923 cites W2280762250 @default.
- W4386917923 cites W2326657743 @default.
- W4386917923 cites W2770348255 @default.
- W4386917923 cites W2773727367 @default.
- W4386917923 cites W2902316253 @default.
- W4386917923 cites W2903595815 @default.
- W4386917923 cites W2924617625 @default.
- W4386917923 cites W2966792020 @default.
- W4386917923 cites W2978235428 @default.
- W4386917923 cites W3012827461 @default.
- W4386917923 cites W3017079300 @default.
- W4386917923 cites W3021843318 @default.
- W4386917923 cites W3022545744 @default.
- W4386917923 cites W3031942552 @default.
- W4386917923 cites W3048516240 @default.
- W4386917923 cites W3093550081 @default.
- W4386917923 cites W3111506399 @default.
- W4386917923 cites W3127671756 @default.
- W4386917923 cites W3129520566 @default.
- W4386917923 cites W3132398728 @default.
- W4386917923 cites W3137818185 @default.
- W4386917923 cites W3157621252 @default.
- W4386917923 cites W3194078292 @default.
- W4386917923 cites W3197467098 @default.
- W4386917923 cites W3200874340 @default.
- W4386917923 cites W4214705499 @default.
- W4386917923 cites W4280521300 @default.
- W4386917923 cites W4281481343 @default.
- W4386917923 cites W4283772197 @default.
- W4386917923 cites W4313549642 @default.
- W4386917923 cites W4318200093 @default.
- W4386917923 cites W4319039942 @default.
- W4386917923 cites W4321456946 @default.
- W4386917923 cites W4321460581 @default.
- W4386917923 cites W4321599338 @default.
- W4386917923 cites W4362531944 @default.
- W4386917923 cites W4365504496 @default.
- W4386917923 cites W4380290487 @default.
- W4386917923 cites W4380924917 @default.
- W4386917923 cites W4386401749 @default.
- W4386917923 doi "https://doi.org/10.3390/diagnostics13183013" @default.
- W4386917923 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37761380" @default.
- W4386917923 hasPublicationYear "2023" @default.
- W4386917923 type Work @default.
- W4386917923 citedByCount "0" @default.
- W4386917923 crossrefType "journal-article" @default.
- W4386917923 hasAuthorship W4386917923A5005040366 @default.
- W4386917923 hasAuthorship W4386917923A5030019301 @default.
- W4386917923 hasAuthorship W4386917923A5049341838 @default.
- W4386917923 hasAuthorship W4386917923A5064660795 @default.
- W4386917923 hasAuthorship W4386917923A5067669304 @default.
- W4386917923 hasAuthorship W4386917923A5086670362 @default.
- W4386917923 hasAuthorship W4386917923A5087781254 @default.
- W4386917923 hasAuthorship W4386917923A5088154061 @default.
- W4386917923 hasBestOaLocation W43869179231 @default.
- W4386917923 hasConcept C121608353 @default.
- W4386917923 hasConcept C124504099 @default.
- W4386917923 hasConcept C126322002 @default.
- W4386917923 hasConcept C153180895 @default.
- W4386917923 hasConcept C154945302 @default.
- W4386917923 hasConcept C163892561 @default.
- W4386917923 hasConcept C203519979 @default.
- W4386917923 hasConcept C2775842073 @default.
- W4386917923 hasConcept C2780192828 @default.
- W4386917923 hasConcept C2989005 @default.
- W4386917923 hasConcept C41008148 @default.
- W4386917923 hasConcept C71924100 @default.
- W4386917923 hasConcept C89600930 @default.
- W4386917923 hasConceptScore W4386917923C121608353 @default.
- W4386917923 hasConceptScore W4386917923C124504099 @default.
- W4386917923 hasConceptScore W4386917923C126322002 @default.
- W4386917923 hasConceptScore W4386917923C153180895 @default.
- W4386917923 hasConceptScore W4386917923C154945302 @default.
- W4386917923 hasConceptScore W4386917923C163892561 @default.
- W4386917923 hasConceptScore W4386917923C203519979 @default.
- W4386917923 hasConceptScore W4386917923C2775842073 @default.
- W4386917923 hasConceptScore W4386917923C2780192828 @default.
- W4386917923 hasConceptScore W4386917923C2989005 @default.
- W4386917923 hasConceptScore W4386917923C41008148 @default.
- W4386917923 hasConceptScore W4386917923C71924100 @default.
- W4386917923 hasConceptScore W4386917923C89600930 @default.
- W4386917923 hasIssue "18" @default.
- W4386917923 hasLocation W43869179231 @default.