Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386918744> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4386918744 endingPage "12" @default.
- W4386918744 startingPage "1" @default.
- W4386918744 abstract "Multimodal volumetric segmentation and fusion are two valuable techniques for surgical treatment planning, image-guided interventions, tumor growth detection, radiotherapy map generation, etc. In recent years, deep learning has demonstrated its excellent capability in both of the above tasks, while these methods inevitably face bottlenecks. On the one hand, recent segmentation studies, especially the U-Net-style series, have reached the performance ceiling in segmentation tasks. On the other hand, it is almost impossible to capture the ground truth of the fusion in multimodal imaging, due to differences in physical principles among imaging modalities. Hence, most of the existing studies in the field of multimodal medical image fusion, which fuse only two modalities at a time with hand-crafted proportions, are subjective and task-specific. To address the above concerns, this work proposes an integration of multimodal segmentation and fusion, namely SegCoFusion, which consists of a novel feature frequency dividing network named FDNet and a segmentation part using a dual-single path feature supplementing strategy to optimize the segmentation inputs and suture with the fusion part. Furthermore, focusing on multimodal brain tumor volumetric fusion and segmentation, the qualitative and quantitative results demonstrate that SegCoFusion can break the ceiling both of segmentation and fusion methods. Moreover, the effectiveness of the proposed framework is also revealed by comparing it with state-of-the-art fusion methods on 2D two-modality fusion tasks, our method achieves better fusion performance than others. Therefore, the proposed SegCoFusion develops a novel perspective that improves the performance in volumetric fusion by cooperating with segmentation and enhances lesion awareness." @default.
- W4386918744 created "2023-09-22" @default.
- W4386918744 creator A5013779839 @default.
- W4386918744 creator A5015885637 @default.
- W4386918744 creator A5030890710 @default.
- W4386918744 creator A5038192639 @default.
- W4386918744 date "2023-01-01" @default.
- W4386918744 modified "2023-09-29" @default.
- W4386918744 title "SegCoFusion: An Integrative Multimodal Volumetric Segmentation Cooperating with Fusion Pipeline to Enhance Lesion Awareness" @default.
- W4386918744 doi "https://doi.org/10.1109/jbhi.2023.3318131" @default.
- W4386918744 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37738185" @default.
- W4386918744 hasPublicationYear "2023" @default.
- W4386918744 type Work @default.
- W4386918744 citedByCount "0" @default.
- W4386918744 crossrefType "journal-article" @default.
- W4386918744 hasAuthorship W4386918744A5013779839 @default.
- W4386918744 hasAuthorship W4386918744A5015885637 @default.
- W4386918744 hasAuthorship W4386918744A5030890710 @default.
- W4386918744 hasAuthorship W4386918744A5038192639 @default.
- W4386918744 hasConcept C108583219 @default.
- W4386918744 hasConcept C115961682 @default.
- W4386918744 hasConcept C124504099 @default.
- W4386918744 hasConcept C138885662 @default.
- W4386918744 hasConcept C146849305 @default.
- W4386918744 hasConcept C153180895 @default.
- W4386918744 hasConcept C154945302 @default.
- W4386918744 hasConcept C158525013 @default.
- W4386918744 hasConcept C2776401178 @default.
- W4386918744 hasConcept C2780226545 @default.
- W4386918744 hasConcept C31972630 @default.
- W4386918744 hasConcept C41008148 @default.
- W4386918744 hasConcept C41895202 @default.
- W4386918744 hasConcept C65885262 @default.
- W4386918744 hasConcept C69744172 @default.
- W4386918744 hasConcept C89600930 @default.
- W4386918744 hasConceptScore W4386918744C108583219 @default.
- W4386918744 hasConceptScore W4386918744C115961682 @default.
- W4386918744 hasConceptScore W4386918744C124504099 @default.
- W4386918744 hasConceptScore W4386918744C138885662 @default.
- W4386918744 hasConceptScore W4386918744C146849305 @default.
- W4386918744 hasConceptScore W4386918744C153180895 @default.
- W4386918744 hasConceptScore W4386918744C154945302 @default.
- W4386918744 hasConceptScore W4386918744C158525013 @default.
- W4386918744 hasConceptScore W4386918744C2776401178 @default.
- W4386918744 hasConceptScore W4386918744C2780226545 @default.
- W4386918744 hasConceptScore W4386918744C31972630 @default.
- W4386918744 hasConceptScore W4386918744C41008148 @default.
- W4386918744 hasConceptScore W4386918744C41895202 @default.
- W4386918744 hasConceptScore W4386918744C65885262 @default.
- W4386918744 hasConceptScore W4386918744C69744172 @default.
- W4386918744 hasConceptScore W4386918744C89600930 @default.
- W4386918744 hasLocation W43869187441 @default.
- W4386918744 hasLocation W43869187442 @default.
- W4386918744 hasOpenAccess W4386918744 @default.
- W4386918744 hasPrimaryLocation W43869187441 @default.
- W4386918744 hasRelatedWork W158826679 @default.
- W4386918744 hasRelatedWork W1669643531 @default.
- W4386918744 hasRelatedWork W1982826852 @default.
- W4386918744 hasRelatedWork W2005437358 @default.
- W4386918744 hasRelatedWork W2118381968 @default.
- W4386918744 hasRelatedWork W2517104666 @default.
- W4386918744 hasRelatedWork W2549936415 @default.
- W4386918744 hasRelatedWork W2566648451 @default.
- W4386918744 hasRelatedWork W2892474421 @default.
- W4386918744 hasRelatedWork W1967061043 @default.
- W4386918744 isParatext "false" @default.
- W4386918744 isRetracted "false" @default.
- W4386918744 workType "article" @default.