Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386931780> ?p ?o ?g. }
- W4386931780 endingPage "100293" @default.
- W4386931780 startingPage "100293" @default.
- W4386931780 abstract "As the global population is growing at a high rate, so is the electricity demand also increasing at a faster rate. This exerts pressure on electricity-generating plants and maintenance engineers because of the variability in demand. Avoiding disruption in the supply to meet demand requires forecasting what the future of demand will look like to be able to plan adequately towards it. This study, therefore, develops a new forecasting model using feature extraction (FE) where statistical information of the hourly demand data is extracted which serves as input variables for Backpropagation neural network (BPNN) optimized by particle swarm optimization (PSO) for electricity demand forecasting in Ghana. The model known as FE-PSO-BPNN is compared to other seven models such as Radial Basis Function (RBFNN), Random Forest (RF), Gradient Boosting Machine (GBM), Multivariate Adaptive Regression Splines (MARS), BPNN, and PSO-RBFNN where FE selects the input variables for all models. Electricity demand data from Ghana Grid Company from the period including 1st September 2018 to 30th November 2019 is used for the testing of the model's performance. Evaluation criteria such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Scatter Index (SI) were used. The proposed model is more powerful in forecasting electricity demand than the others as it has RMSE (0.5344), MAE (3.3845), MAPE (0.1773), and SI (0.0003). The model is expected to be a better option for electricity sector managers when considering demand forecasting." @default.
- W4386931780 created "2023-09-22" @default.
- W4386931780 creator A5020873245 @default.
- W4386931780 creator A5051258802 @default.
- W4386931780 date "2023-12-01" @default.
- W4386931780 modified "2023-09-29" @default.
- W4386931780 title "Electricity Demand Forecasting Based on Feature Extraction and Optimized Backpropagation Neural Network" @default.
- W4386931780 cites W1987498744 @default.
- W4386931780 cites W2094810363 @default.
- W4386931780 cites W2241420790 @default.
- W4386931780 cites W2573137292 @default.
- W4386931780 cites W2808521893 @default.
- W4386931780 cites W2899934327 @default.
- W4386931780 cites W2903853321 @default.
- W4386931780 cites W2904176988 @default.
- W4386931780 cites W2977045868 @default.
- W4386931780 cites W2989909739 @default.
- W4386931780 cites W2998944925 @default.
- W4386931780 cites W3000503970 @default.
- W4386931780 cites W3010335229 @default.
- W4386931780 cites W3011699874 @default.
- W4386931780 cites W3012474622 @default.
- W4386931780 cites W3022720643 @default.
- W4386931780 cites W3025835050 @default.
- W4386931780 cites W3033347802 @default.
- W4386931780 cites W3039958185 @default.
- W4386931780 cites W3042506090 @default.
- W4386931780 cites W3113689553 @default.
- W4386931780 cites W3132057070 @default.
- W4386931780 cites W3138758700 @default.
- W4386931780 cites W3156663898 @default.
- W4386931780 cites W3198589972 @default.
- W4386931780 cites W3210123833 @default.
- W4386931780 cites W3214430374 @default.
- W4386931780 cites W3215894900 @default.
- W4386931780 cites W3216423019 @default.
- W4386931780 cites W4205571213 @default.
- W4386931780 cites W4213021104 @default.
- W4386931780 cites W4220764559 @default.
- W4386931780 cites W4224059020 @default.
- W4386931780 cites W4283736942 @default.
- W4386931780 cites W4294846974 @default.
- W4386931780 cites W4311498609 @default.
- W4386931780 cites W4316664875 @default.
- W4386931780 cites W4320478292 @default.
- W4386931780 cites W4362717416 @default.
- W4386931780 cites W4366246010 @default.
- W4386931780 cites W4379644366 @default.
- W4386931780 doi "https://doi.org/10.1016/j.prime.2023.100293" @default.
- W4386931780 hasPublicationYear "2023" @default.
- W4386931780 type Work @default.
- W4386931780 citedByCount "0" @default.
- W4386931780 crossrefType "journal-article" @default.
- W4386931780 hasAuthorship W4386931780A5020873245 @default.
- W4386931780 hasAuthorship W4386931780A5051258802 @default.
- W4386931780 hasBestOaLocation W43869317801 @default.
- W4386931780 hasConcept C105795698 @default.
- W4386931780 hasConcept C119599485 @default.
- W4386931780 hasConcept C119857082 @default.
- W4386931780 hasConcept C127413603 @default.
- W4386931780 hasConcept C139945424 @default.
- W4386931780 hasConcept C149782125 @default.
- W4386931780 hasConcept C150217764 @default.
- W4386931780 hasConcept C154945302 @default.
- W4386931780 hasConcept C155032097 @default.
- W4386931780 hasConcept C169258074 @default.
- W4386931780 hasConcept C193809577 @default.
- W4386931780 hasConcept C206658404 @default.
- W4386931780 hasConcept C2780150128 @default.
- W4386931780 hasConcept C33923547 @default.
- W4386931780 hasConcept C41008148 @default.
- W4386931780 hasConcept C42475967 @default.
- W4386931780 hasConcept C50644808 @default.
- W4386931780 hasConcept C85617194 @default.
- W4386931780 hasConceptScore W4386931780C105795698 @default.
- W4386931780 hasConceptScore W4386931780C119599485 @default.
- W4386931780 hasConceptScore W4386931780C119857082 @default.
- W4386931780 hasConceptScore W4386931780C127413603 @default.
- W4386931780 hasConceptScore W4386931780C139945424 @default.
- W4386931780 hasConceptScore W4386931780C149782125 @default.
- W4386931780 hasConceptScore W4386931780C150217764 @default.
- W4386931780 hasConceptScore W4386931780C154945302 @default.
- W4386931780 hasConceptScore W4386931780C155032097 @default.
- W4386931780 hasConceptScore W4386931780C169258074 @default.
- W4386931780 hasConceptScore W4386931780C193809577 @default.
- W4386931780 hasConceptScore W4386931780C206658404 @default.
- W4386931780 hasConceptScore W4386931780C2780150128 @default.
- W4386931780 hasConceptScore W4386931780C33923547 @default.
- W4386931780 hasConceptScore W4386931780C41008148 @default.
- W4386931780 hasConceptScore W4386931780C42475967 @default.
- W4386931780 hasConceptScore W4386931780C50644808 @default.
- W4386931780 hasConceptScore W4386931780C85617194 @default.
- W4386931780 hasLocation W43869317801 @default.
- W4386931780 hasOpenAccess W4386931780 @default.
- W4386931780 hasPrimaryLocation W43869317801 @default.
- W4386931780 hasRelatedWork W2543203081 @default.
- W4386931780 hasRelatedWork W2767026677 @default.
- W4386931780 hasRelatedWork W2920525763 @default.