Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386932019> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4386932019 abstract "Abstract Segmenting medical images is a principal component of computer vision. The UNet model framework has taken over as the standard framework for this activity across a wide range of medical picture segmentation applications. Due to convolutional neural networks (CNNs) convolution operation limitations, the model's global modeling ability is not absolutely perfect. Moreover, a single convolution operation cannot gather feature information at various scales, which will have an impact on the quality of the global feature extraction as well as the localization of local details. The DCELANM‐Net structure, which this article offers, is a model that ingeniously combines a Dual Channel Efficient Layer Aggregation Network (DCELAN) and a Micro Masked Autoencoder (Micro‐MAE). On the one hand, for the DCELAN, the features are more effectively fitted by deepening the network structure, which in turn can successfully learn and fuse the features, helping to locate the local feature information more accurately; and the utilization of each layer of channels is more effectively improved by widening the network structure and residual connections. We adopt Micro‐MAE as the learner of the model. In addition to being straightforward in its methodology, it also includes a self‐supervised learning method, which has the benefit of being incredibly scalable for the model. This scalable method enables the generalization of high‐volume models, and the models can show good scaling behavior. It is also shown that Micro‐MAE is a powerful and adaptable learner that we can incorporate it into our network design to improve the model's accuracy and stability for tasks involving medical picture segmentation. Superior metrics and good generalization are demonstrated by DCELANM‐Net on the datasets Kvasir‐SEG and CVC‐ClinicDB. In the experiments, we set DCELANM‐S and DCELANM‐L to represent different sizes of the model, and since DCELANM‐L has the best performance, DCELANM‐L is determined as the base model for all experiments, called DCELANM." @default.
- W4386932019 created "2023-09-22" @default.
- W4386932019 creator A5004425785 @default.
- W4386932019 creator A5021989472 @default.
- W4386932019 creator A5041388749 @default.
- W4386932019 creator A5080633904 @default.
- W4386932019 creator A5083731339 @default.
- W4386932019 date "2023-09-21" @default.
- W4386932019 modified "2023-10-16" @default.
- W4386932019 title "<scp>DCELANM‐Net</scp>: Medical image segmentation based on dual channel efficient layer aggregation network with learner" @default.
- W4386932019 cites W2008359794 @default.
- W4386932019 cites W2412782625 @default.
- W4386932019 cites W2517954747 @default.
- W4386932019 cites W2907750714 @default.
- W4386932019 cites W2928133111 @default.
- W4386932019 cites W2953129827 @default.
- W4386932019 cites W2970987838 @default.
- W4386932019 cites W2999580839 @default.
- W4386932019 cites W3102785203 @default.
- W4386932019 cites W4289822973 @default.
- W4386932019 doi "https://doi.org/10.1002/ima.22960" @default.
- W4386932019 hasPublicationYear "2023" @default.
- W4386932019 type Work @default.
- W4386932019 citedByCount "0" @default.
- W4386932019 crossrefType "journal-article" @default.
- W4386932019 hasAuthorship W4386932019A5004425785 @default.
- W4386932019 hasAuthorship W4386932019A5021989472 @default.
- W4386932019 hasAuthorship W4386932019A5041388749 @default.
- W4386932019 hasAuthorship W4386932019A5080633904 @default.
- W4386932019 hasAuthorship W4386932019A5083731339 @default.
- W4386932019 hasConcept C101738243 @default.
- W4386932019 hasConcept C108583219 @default.
- W4386932019 hasConcept C119599485 @default.
- W4386932019 hasConcept C124101348 @default.
- W4386932019 hasConcept C127162648 @default.
- W4386932019 hasConcept C127413603 @default.
- W4386932019 hasConcept C134306372 @default.
- W4386932019 hasConcept C138885662 @default.
- W4386932019 hasConcept C141353440 @default.
- W4386932019 hasConcept C153180895 @default.
- W4386932019 hasConcept C154945302 @default.
- W4386932019 hasConcept C177148314 @default.
- W4386932019 hasConcept C2776401178 @default.
- W4386932019 hasConcept C31258907 @default.
- W4386932019 hasConcept C33923547 @default.
- W4386932019 hasConcept C41008148 @default.
- W4386932019 hasConcept C41895202 @default.
- W4386932019 hasConcept C45347329 @default.
- W4386932019 hasConcept C48044578 @default.
- W4386932019 hasConcept C50644808 @default.
- W4386932019 hasConcept C59404180 @default.
- W4386932019 hasConcept C77088390 @default.
- W4386932019 hasConcept C81363708 @default.
- W4386932019 hasConcept C88796919 @default.
- W4386932019 hasConcept C89600930 @default.
- W4386932019 hasConceptScore W4386932019C101738243 @default.
- W4386932019 hasConceptScore W4386932019C108583219 @default.
- W4386932019 hasConceptScore W4386932019C119599485 @default.
- W4386932019 hasConceptScore W4386932019C124101348 @default.
- W4386932019 hasConceptScore W4386932019C127162648 @default.
- W4386932019 hasConceptScore W4386932019C127413603 @default.
- W4386932019 hasConceptScore W4386932019C134306372 @default.
- W4386932019 hasConceptScore W4386932019C138885662 @default.
- W4386932019 hasConceptScore W4386932019C141353440 @default.
- W4386932019 hasConceptScore W4386932019C153180895 @default.
- W4386932019 hasConceptScore W4386932019C154945302 @default.
- W4386932019 hasConceptScore W4386932019C177148314 @default.
- W4386932019 hasConceptScore W4386932019C2776401178 @default.
- W4386932019 hasConceptScore W4386932019C31258907 @default.
- W4386932019 hasConceptScore W4386932019C33923547 @default.
- W4386932019 hasConceptScore W4386932019C41008148 @default.
- W4386932019 hasConceptScore W4386932019C41895202 @default.
- W4386932019 hasConceptScore W4386932019C45347329 @default.
- W4386932019 hasConceptScore W4386932019C48044578 @default.
- W4386932019 hasConceptScore W4386932019C50644808 @default.
- W4386932019 hasConceptScore W4386932019C59404180 @default.
- W4386932019 hasConceptScore W4386932019C77088390 @default.
- W4386932019 hasConceptScore W4386932019C81363708 @default.
- W4386932019 hasConceptScore W4386932019C88796919 @default.
- W4386932019 hasConceptScore W4386932019C89600930 @default.
- W4386932019 hasLocation W43869320191 @default.
- W4386932019 hasOpenAccess W4386932019 @default.
- W4386932019 hasPrimaryLocation W43869320191 @default.
- W4386932019 hasRelatedWork W2292254049 @default.
- W4386932019 hasRelatedWork W2295021132 @default.
- W4386932019 hasRelatedWork W2592385986 @default.
- W4386932019 hasRelatedWork W2998168123 @default.
- W4386932019 hasRelatedWork W3118590274 @default.
- W4386932019 hasRelatedWork W3165463024 @default.
- W4386932019 hasRelatedWork W3169547290 @default.
- W4386932019 hasRelatedWork W4287178339 @default.
- W4386932019 hasRelatedWork W4287995534 @default.
- W4386932019 hasRelatedWork W4312417841 @default.
- W4386932019 isParatext "false" @default.
- W4386932019 isRetracted "false" @default.
- W4386932019 workType "article" @default.