Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386933980> ?p ?o ?g. }
- W4386933980 endingPage "6726" @default.
- W4386933980 startingPage "6726" @default.
- W4386933980 abstract "It is indisputable that power systems are being transformed around the world to increase the use of RES and reduce the use of fossil fuels in overall electricity production. This year, the EU Parliament adopted the Fit for 55 package, which should significantly reduce the use of fossil fuels in the energy balance of EU countries while increasing the use of RES. At the end of 2022, the total number of prosumer installations in Poland amounted to about one million two hundred thousand. Such a high saturation of prosumer micro-installations in the power system causes many threats resulting from their operation. These threats result, among others, from the fact that photovoltaics are classified as unstable sources and the expected production of electricity from such installations is primarily associated with highly variable weather conditions and is only dependent on people to a minor extent. Currently, there is a rapid development of topics related to forecasting the volume of energy production from unstable sources such as wind and photovoltaic power plants. This issue is being actively developed by research units around the world. Scientists use a whole range of tools and models related to forecasting techniques, from physical models to artificial intelligence. According to our findings, the use of machine learning models has the greatest chance of obtaining positive prognostic effects for small, widely distributed prosumer installations. The present paper presents the research results of two energy balance prediction algorithms based on machine learning models. For forecasting, we proposed two regression models, i.e., regularized LASSO regression and random forests. The work analyzed scenarios taking into account both endogenous and exogenous variables as well as direct multi-step forecasting and recursive multi-step forecasting. The training was carried out on real data obtained from a prosumer micro-installation. Finally, it was found that the best forecasting results are obtained with the use of a random forest model trained using a recursive multi-step method and an exogenous scenario." @default.
- W4386933980 created "2023-09-22" @default.
- W4386933980 creator A5014368731 @default.
- W4386933980 creator A5033953858 @default.
- W4386933980 creator A5073581976 @default.
- W4386933980 date "2023-09-20" @default.
- W4386933980 modified "2023-09-29" @default.
- W4386933980 title "Forecasting of Energy Balance in Prosumer Micro-Installations Using Machine Learning Models" @default.
- W4386933980 cites W106711868 @default.
- W4386933980 cites W1994777337 @default.
- W4386933980 cites W2023419040 @default.
- W4386933980 cites W2027714582 @default.
- W4386933980 cites W2031979881 @default.
- W4386933980 cites W2090457460 @default.
- W4386933980 cites W2103783511 @default.
- W4386933980 cites W2145757840 @default.
- W4386933980 cites W2152271106 @default.
- W4386933980 cites W2155907703 @default.
- W4386933980 cites W2185592418 @default.
- W4386933980 cites W2263172173 @default.
- W4386933980 cites W2263224228 @default.
- W4386933980 cites W2284835736 @default.
- W4386933980 cites W2508682153 @default.
- W4386933980 cites W2560833653 @default.
- W4386933980 cites W2622243950 @default.
- W4386933980 cites W2769239321 @default.
- W4386933980 cites W2798678057 @default.
- W4386933980 cites W2801973365 @default.
- W4386933980 cites W2807252330 @default.
- W4386933980 cites W2886331164 @default.
- W4386933980 cites W2905938902 @default.
- W4386933980 cites W2909478068 @default.
- W4386933980 cites W2911964244 @default.
- W4386933980 cites W2913724014 @default.
- W4386933980 cites W2941419477 @default.
- W4386933980 cites W2943440041 @default.
- W4386933980 cites W2945118726 @default.
- W4386933980 cites W2994925146 @default.
- W4386933980 cites W2997806641 @default.
- W4386933980 cites W3006973513 @default.
- W4386933980 cites W3015434357 @default.
- W4386933980 cites W3022380717 @default.
- W4386933980 cites W3082548640 @default.
- W4386933980 cites W3177274304 @default.
- W4386933980 cites W3203151225 @default.
- W4386933980 cites W3206461806 @default.
- W4386933980 cites W3214910795 @default.
- W4386933980 cites W4211129303 @default.
- W4386933980 cites W4220954082 @default.
- W4386933980 cites W4306149771 @default.
- W4386933980 cites W4313328032 @default.
- W4386933980 cites W4318053679 @default.
- W4386933980 cites W4319320362 @default.
- W4386933980 cites W799444528 @default.
- W4386933980 doi "https://doi.org/10.3390/en16186726" @default.
- W4386933980 hasPublicationYear "2023" @default.
- W4386933980 type Work @default.
- W4386933980 citedByCount "0" @default.
- W4386933980 crossrefType "journal-article" @default.
- W4386933980 hasAuthorship W4386933980A5014368731 @default.
- W4386933980 hasAuthorship W4386933980A5033953858 @default.
- W4386933980 hasAuthorship W4386933980A5073581976 @default.
- W4386933980 hasBestOaLocation W43869339801 @default.
- W4386933980 hasConcept C119599485 @default.
- W4386933980 hasConcept C121332964 @default.
- W4386933980 hasConcept C127413603 @default.
- W4386933980 hasConcept C134560507 @default.
- W4386933980 hasConcept C136764020 @default.
- W4386933980 hasConcept C162324750 @default.
- W4386933980 hasConcept C163258240 @default.
- W4386933980 hasConcept C188573790 @default.
- W4386933980 hasConcept C206658404 @default.
- W4386933980 hasConcept C2779939747 @default.
- W4386933980 hasConcept C37616216 @default.
- W4386933980 hasConcept C41008148 @default.
- W4386933980 hasConcept C423512 @default.
- W4386933980 hasConcept C548081761 @default.
- W4386933980 hasConcept C62520636 @default.
- W4386933980 hasConcept C68189081 @default.
- W4386933980 hasConcept C78600449 @default.
- W4386933980 hasConceptScore W4386933980C119599485 @default.
- W4386933980 hasConceptScore W4386933980C121332964 @default.
- W4386933980 hasConceptScore W4386933980C127413603 @default.
- W4386933980 hasConceptScore W4386933980C134560507 @default.
- W4386933980 hasConceptScore W4386933980C136764020 @default.
- W4386933980 hasConceptScore W4386933980C162324750 @default.
- W4386933980 hasConceptScore W4386933980C163258240 @default.
- W4386933980 hasConceptScore W4386933980C188573790 @default.
- W4386933980 hasConceptScore W4386933980C206658404 @default.
- W4386933980 hasConceptScore W4386933980C2779939747 @default.
- W4386933980 hasConceptScore W4386933980C37616216 @default.
- W4386933980 hasConceptScore W4386933980C41008148 @default.
- W4386933980 hasConceptScore W4386933980C423512 @default.
- W4386933980 hasConceptScore W4386933980C548081761 @default.
- W4386933980 hasConceptScore W4386933980C62520636 @default.
- W4386933980 hasConceptScore W4386933980C68189081 @default.
- W4386933980 hasConceptScore W4386933980C78600449 @default.
- W4386933980 hasIssue "18" @default.