Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386935497> ?p ?o ?g. }
- W4386935497 abstract "Abstract Surface-enhanced Raman spectroscopy (SERS), as a rapid, non-invasive and reliable spectroscopic detection technique, has promising applications in disease screening and diagnosis. In this paper, an annealed silver nanoparticles/porous silicon Bragg reflector (AgNPs/PSB) composite SERS substrate with high sensitivity and strong stability was prepared by immersion plating and heat treatment using porous silicon Bragg reflector (PSB) as the substrate. The substrate combines the five deep learning algorithms of the improved AlexNet, ResNet, SqueezeNet, temporal convolutional network (TCN) and multiscale fusion convolutional neural network (MCNN). We constructed rapid screening models for patients with primary Sjögren’s syndrome (pSS) and healthy controls (HC), diabetic nephropathy patients (DN) and healthy controls (HC), respectively. The results showed that the annealed AgNPs/PSB composite SERS substrates performed well in diagnosing. Among them, the MCNN model had the best classification effect in the two groups of experiments, with an accuracy rate of 94.7% and 92.0%, respectively. Previous studies have indicated that the AgNPs/PSB composite SERS substrate, combined with machine learning algorithms, has achieved promising classification results in disease diagnosis. This study shows that SERS technology based on annealed AgNPs/PSB composite substrate combined with deep learning algorithm has a greater developmental prospect and research value in the early identification and screening of immune diseases and chronic kidney disease, providing reference ideas for non-invasive and rapid clinical medical diagnosis of patients." @default.
- W4386935497 created "2023-09-22" @default.
- W4386935497 creator A5034608423 @default.
- W4386935497 creator A5039664148 @default.
- W4386935497 creator A5044497095 @default.
- W4386935497 creator A5048025879 @default.
- W4386935497 creator A5063253432 @default.
- W4386935497 creator A5064683226 @default.
- W4386935497 creator A5064868796 @default.
- W4386935497 creator A5073968240 @default.
- W4386935497 creator A5082181811 @default.
- W4386935497 date "2023-09-21" @default.
- W4386935497 modified "2023-10-16" @default.
- W4386935497 title "Application of serum SERS technology combined with deep learning algorithm in the rapid diagnosis of immune diseases and chronic kidney disease" @default.
- W4386935497 cites W1972569781 @default.
- W4386935497 cites W2076063813 @default.
- W4386935497 cites W2147272168 @default.
- W4386935497 cites W2176950688 @default.
- W4386935497 cites W2179402293 @default.
- W4386935497 cites W2379604527 @default.
- W4386935497 cites W2409798226 @default.
- W4386935497 cites W2739875409 @default.
- W4386935497 cites W2749908318 @default.
- W4386935497 cites W2752532133 @default.
- W4386935497 cites W2801057226 @default.
- W4386935497 cites W2883588352 @default.
- W4386935497 cites W2886977598 @default.
- W4386935497 cites W2892600563 @default.
- W4386935497 cites W2901034867 @default.
- W4386935497 cites W2901051598 @default.
- W4386935497 cites W2903569938 @default.
- W4386935497 cites W2915101034 @default.
- W4386935497 cites W2936619306 @default.
- W4386935497 cites W2950506659 @default.
- W4386935497 cites W2952266823 @default.
- W4386935497 cites W2984422141 @default.
- W4386935497 cites W2986710144 @default.
- W4386935497 cites W3005799631 @default.
- W4386935497 cites W3015428699 @default.
- W4386935497 cites W3027447425 @default.
- W4386935497 cites W3036610920 @default.
- W4386935497 cites W3038227249 @default.
- W4386935497 cites W3044190173 @default.
- W4386935497 cites W3044777619 @default.
- W4386935497 cites W3087308582 @default.
- W4386935497 cites W3089367736 @default.
- W4386935497 cites W3092691517 @default.
- W4386935497 cites W3095838830 @default.
- W4386935497 cites W3108113114 @default.
- W4386935497 cites W3111612761 @default.
- W4386935497 cites W3127622467 @default.
- W4386935497 cites W3128744902 @default.
- W4386935497 cites W3155009851 @default.
- W4386935497 cites W3170186392 @default.
- W4386935497 cites W3172488023 @default.
- W4386935497 cites W3191890403 @default.
- W4386935497 cites W3200315724 @default.
- W4386935497 cites W3203303856 @default.
- W4386935497 cites W3214790995 @default.
- W4386935497 cites W4205996472 @default.
- W4386935497 cites W4206975137 @default.
- W4386935497 cites W4210722381 @default.
- W4386935497 cites W4214513330 @default.
- W4386935497 cites W4220716843 @default.
- W4386935497 cites W4224861705 @default.
- W4386935497 cites W4226192595 @default.
- W4386935497 cites W4238768614 @default.
- W4386935497 cites W4288739822 @default.
- W4386935497 cites W4293213211 @default.
- W4386935497 cites W4306194471 @default.
- W4386935497 cites W4327703304 @default.
- W4386935497 doi "https://doi.org/10.1038/s41598-023-42719-5" @default.
- W4386935497 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37735599" @default.
- W4386935497 hasPublicationYear "2023" @default.
- W4386935497 type Work @default.
- W4386935497 citedByCount "0" @default.
- W4386935497 crossrefType "journal-article" @default.
- W4386935497 hasAuthorship W4386935497A5034608423 @default.
- W4386935497 hasAuthorship W4386935497A5039664148 @default.
- W4386935497 hasAuthorship W4386935497A5044497095 @default.
- W4386935497 hasAuthorship W4386935497A5048025879 @default.
- W4386935497 hasAuthorship W4386935497A5063253432 @default.
- W4386935497 hasAuthorship W4386935497A5064683226 @default.
- W4386935497 hasAuthorship W4386935497A5064868796 @default.
- W4386935497 hasAuthorship W4386935497A5073968240 @default.
- W4386935497 hasAuthorship W4386935497A5082181811 @default.
- W4386935497 hasBestOaLocation W43869354971 @default.
- W4386935497 hasConcept C11413529 @default.
- W4386935497 hasConcept C126322002 @default.
- W4386935497 hasConcept C154945302 @default.
- W4386935497 hasConcept C192562407 @default.
- W4386935497 hasConcept C2778653478 @default.
- W4386935497 hasConcept C41008148 @default.
- W4386935497 hasConcept C71924100 @default.
- W4386935497 hasConcept C81363708 @default.
- W4386935497 hasConceptScore W4386935497C11413529 @default.
- W4386935497 hasConceptScore W4386935497C126322002 @default.
- W4386935497 hasConceptScore W4386935497C154945302 @default.
- W4386935497 hasConceptScore W4386935497C192562407 @default.
- W4386935497 hasConceptScore W4386935497C2778653478 @default.