Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386938235> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4386938235 endingPage "152" @default.
- W4386938235 startingPage "139" @default.
- W4386938235 abstract "Accurately predicting tumor drug sensitivity is important in drug development and selection. To address this issue, we propose a novel machine learning model, called GBDT-RF, using gradient boosting decision tree (GBDT) algorithm and random forest (RF) algorithm based on the drug sensitivity IC50 correlation data from the GDSC database. Through the prediction analysis of eight drugs, compared with the GBDT, RF, logical regression (LR), and support vector machine (SVM), our GBDT-RF algorithm has the best performance for predicting cancer drug sensitivity in terms of all metrics used. This shows that the GBDT-RF algorithm has certain advantages over the conventional machine learning models. Our proposed model can also provide some reference for medical decision-makers to predict tumor drug sensitivity." @default.
- W4386938235 created "2023-09-22" @default.
- W4386938235 creator A5025410544 @default.
- W4386938235 creator A5038005430 @default.
- W4386938235 creator A5045359400 @default.
- W4386938235 date "2023-01-01" @default.
- W4386938235 modified "2023-10-16" @default.
- W4386938235 title "Prediction of Cancer Drug Sensitivity Based on GBDT-RF Algorithm" @default.
- W4386938235 cites W1749623888 @default.
- W4386938235 cites W1966684685 @default.
- W4386938235 cites W1983578130 @default.
- W4386938235 cites W2039137224 @default.
- W4386938235 cites W2065835133 @default.
- W4386938235 cites W2066395572 @default.
- W4386938235 cites W2129860849 @default.
- W4386938235 cites W2465707019 @default.
- W4386938235 cites W2762742184 @default.
- W4386938235 cites W2800850886 @default.
- W4386938235 cites W2911535432 @default.
- W4386938235 cites W3000469142 @default.
- W4386938235 cites W3008395627 @default.
- W4386938235 cites W3009252935 @default.
- W4386938235 cites W3041880399 @default.
- W4386938235 cites W3128209586 @default.
- W4386938235 cites W3159173903 @default.
- W4386938235 doi "https://doi.org/10.1007/978-3-031-44216-2_12" @default.
- W4386938235 hasPublicationYear "2023" @default.
- W4386938235 type Work @default.
- W4386938235 citedByCount "0" @default.
- W4386938235 crossrefType "book-chapter" @default.
- W4386938235 hasAuthorship W4386938235A5025410544 @default.
- W4386938235 hasAuthorship W4386938235A5038005430 @default.
- W4386938235 hasAuthorship W4386938235A5045359400 @default.
- W4386938235 hasConcept C11413529 @default.
- W4386938235 hasConcept C119857082 @default.
- W4386938235 hasConcept C12267149 @default.
- W4386938235 hasConcept C124101348 @default.
- W4386938235 hasConcept C127413603 @default.
- W4386938235 hasConcept C154945302 @default.
- W4386938235 hasConcept C169258074 @default.
- W4386938235 hasConcept C21200559 @default.
- W4386938235 hasConcept C24326235 @default.
- W4386938235 hasConcept C41008148 @default.
- W4386938235 hasConcept C46686674 @default.
- W4386938235 hasConcept C84525736 @default.
- W4386938235 hasConceptScore W4386938235C11413529 @default.
- W4386938235 hasConceptScore W4386938235C119857082 @default.
- W4386938235 hasConceptScore W4386938235C12267149 @default.
- W4386938235 hasConceptScore W4386938235C124101348 @default.
- W4386938235 hasConceptScore W4386938235C127413603 @default.
- W4386938235 hasConceptScore W4386938235C154945302 @default.
- W4386938235 hasConceptScore W4386938235C169258074 @default.
- W4386938235 hasConceptScore W4386938235C21200559 @default.
- W4386938235 hasConceptScore W4386938235C24326235 @default.
- W4386938235 hasConceptScore W4386938235C41008148 @default.
- W4386938235 hasConceptScore W4386938235C46686674 @default.
- W4386938235 hasConceptScore W4386938235C84525736 @default.
- W4386938235 hasLocation W43869382351 @default.
- W4386938235 hasOpenAccess W4386938235 @default.
- W4386938235 hasPrimaryLocation W43869382351 @default.
- W4386938235 hasRelatedWork W1996541855 @default.
- W4386938235 hasRelatedWork W3100297620 @default.
- W4386938235 hasRelatedWork W3195168932 @default.
- W4386938235 hasRelatedWork W4296081764 @default.
- W4386938235 hasRelatedWork W4319718059 @default.
- W4386938235 hasRelatedWork W4321636153 @default.
- W4386938235 hasRelatedWork W4377964522 @default.
- W4386938235 hasRelatedWork W4383535405 @default.
- W4386938235 hasRelatedWork W4386072274 @default.
- W4386938235 hasRelatedWork W4386123260 @default.
- W4386938235 isParatext "false" @default.
- W4386938235 isRetracted "false" @default.
- W4386938235 workType "book-chapter" @default.