Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386940983> ?p ?o ?g. }
- W4386940983 endingPage "116910" @default.
- W4386940983 startingPage "116910" @default.
- W4386940983 abstract "The global attention to using timber products as sustainable construction material urges careful assessment of their performance against different hazards, particularly fire. However, the current methods prescribed by design codes for evaluating the fire resistance of timber components tend to underpredict the outcomes of standard fire resistance tests, and lack interpretability due to the use of semi-empirical equations. This study develops explainable data-driven models to predict fire resistance of timber columns using geometry- and material-related properties based on a comprehensive experimental database. Nine different single and ensemble-based machine learning algorithms were trained, and their performance was optimized through rigorous hyperparameter tuning and feature selection. The best models were then interpreted using partial dependence and Shapley plots to infer the underlying relationship between fire resistance and column properties. Lastly, the models’ predictive capabilities were compared to available prescriptive equations. The results show that a random forest-based model provides the best performance with an average ratio of predicted to observed fire resistance of 1.03 on the test set. The random forest prediction is mainly governed by column capacity at ambient temperature, and to a lesser degree, columns’ cross-section dimension. In addition, the partial dependence plots indicate that the effect of density, modulus of elasticity, length, and compressive strength on fire resistance was not notable. Finally, while the considered prescriptive equations consistently underpredict fire resistance, the random forest model provides a consistently accurate and balanced prediction." @default.
- W4386940983 created "2023-09-22" @default.
- W4386940983 creator A5052529107 @default.
- W4386940983 creator A5061044076 @default.
- W4386940983 creator A5089589448 @default.
- W4386940983 date "2023-12-01" @default.
- W4386940983 modified "2023-10-16" @default.
- W4386940983 title "Evaluating fire resistance of timber columns using explainable machine learning models" @default.
- W4386940983 cites W1964247946 @default.
- W4386940983 cites W1997890678 @default.
- W4386940983 cites W1998532795 @default.
- W4386940983 cites W2040267049 @default.
- W4386940983 cites W2046071902 @default.
- W4386940983 cites W2047185972 @default.
- W4386940983 cites W2051504635 @default.
- W4386940983 cites W2054328107 @default.
- W4386940983 cites W2054432437 @default.
- W4386940983 cites W2074344961 @default.
- W4386940983 cites W2152874621 @default.
- W4386940983 cites W2178503124 @default.
- W4386940983 cites W2606009505 @default.
- W4386940983 cites W2896545817 @default.
- W4386940983 cites W2900279407 @default.
- W4386940983 cites W2911964244 @default.
- W4386940983 cites W2914498608 @default.
- W4386940983 cites W2922073063 @default.
- W4386940983 cites W2964938350 @default.
- W4386940983 cites W2966784548 @default.
- W4386940983 cites W3004047739 @default.
- W4386940983 cites W3021016657 @default.
- W4386940983 cites W3090789213 @default.
- W4386940983 cites W3092190515 @default.
- W4386940983 cites W3092657053 @default.
- W4386940983 cites W3096035337 @default.
- W4386940983 cites W3125299263 @default.
- W4386940983 cites W3139854041 @default.
- W4386940983 cites W3155502180 @default.
- W4386940983 cites W3177007917 @default.
- W4386940983 cites W3179092994 @default.
- W4386940983 cites W3184306506 @default.
- W4386940983 cites W3192834734 @default.
- W4386940983 cites W3196184381 @default.
- W4386940983 cites W4210671246 @default.
- W4386940983 cites W4213248101 @default.
- W4386940983 cites W4220735426 @default.
- W4386940983 cites W4224213636 @default.
- W4386940983 cites W4224256260 @default.
- W4386940983 cites W4225497289 @default.
- W4386940983 cites W4226017353 @default.
- W4386940983 cites W4235256446 @default.
- W4386940983 cites W4244895750 @default.
- W4386940983 cites W4252026969 @default.
- W4386940983 cites W4283787648 @default.
- W4386940983 cites W4297599302 @default.
- W4386940983 cites W4304892762 @default.
- W4386940983 cites W4309205959 @default.
- W4386940983 cites W4310128818 @default.
- W4386940983 cites W4313375669 @default.
- W4386940983 cites W4317214964 @default.
- W4386940983 cites W4317888451 @default.
- W4386940983 cites W603065860 @default.
- W4386940983 doi "https://doi.org/10.1016/j.engstruct.2023.116910" @default.
- W4386940983 hasPublicationYear "2023" @default.
- W4386940983 type Work @default.
- W4386940983 citedByCount "0" @default.
- W4386940983 crossrefType "journal-article" @default.
- W4386940983 hasAuthorship W4386940983A5052529107 @default.
- W4386940983 hasAuthorship W4386940983A5061044076 @default.
- W4386940983 hasAuthorship W4386940983A5089589448 @default.
- W4386940983 hasConcept C119857082 @default.
- W4386940983 hasConcept C127413603 @default.
- W4386940983 hasConcept C13355873 @default.
- W4386940983 hasConcept C159985019 @default.
- W4386940983 hasConcept C169258074 @default.
- W4386940983 hasConcept C18903297 @default.
- W4386940983 hasConcept C192562407 @default.
- W4386940983 hasConcept C2780551164 @default.
- W4386940983 hasConcept C2781067378 @default.
- W4386940983 hasConcept C2987912017 @default.
- W4386940983 hasConcept C33923547 @default.
- W4386940983 hasConcept C39432304 @default.
- W4386940983 hasConcept C41008148 @default.
- W4386940983 hasConcept C57473165 @default.
- W4386940983 hasConcept C66938386 @default.
- W4386940983 hasConcept C8642999 @default.
- W4386940983 hasConcept C86803240 @default.
- W4386940983 hasConceptScore W4386940983C119857082 @default.
- W4386940983 hasConceptScore W4386940983C127413603 @default.
- W4386940983 hasConceptScore W4386940983C13355873 @default.
- W4386940983 hasConceptScore W4386940983C159985019 @default.
- W4386940983 hasConceptScore W4386940983C169258074 @default.
- W4386940983 hasConceptScore W4386940983C18903297 @default.
- W4386940983 hasConceptScore W4386940983C192562407 @default.
- W4386940983 hasConceptScore W4386940983C2780551164 @default.
- W4386940983 hasConceptScore W4386940983C2781067378 @default.
- W4386940983 hasConceptScore W4386940983C2987912017 @default.
- W4386940983 hasConceptScore W4386940983C33923547 @default.
- W4386940983 hasConceptScore W4386940983C39432304 @default.