Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386944054> ?p ?o ?g. }
- W4386944054 endingPage "8748" @default.
- W4386944054 startingPage "8741" @default.
- W4386944054 abstract "While accurate measurements of MgO under extreme high-pressure conditions are needed to understand and model planetary behavior, these studies are challenging from both experimental and computational modeling perspectives. Herein, we accelerate density functional theory (DFT) accurate calculations using deep neural network potentials (DNPs) trained over multiple phases and study the melting behavior of MgO via the two-phase coexistence (TPC) approach at 0–300 GPa and ≤9600 K. The resulting DNP–TPC melting curve is in excellent agreement with existing experimental studies. We show that the mitigation of finite-size effects that typically skew the predicted melting temperatures in DFT–TPC simulations in excess of several hundred kelvin requires models with ∼16 000 atoms and >100 ps molecular dynamics trajectories. In addition, the DNP can successfully describe MgO metallization well at increased pressures that are captured by DFT but missed by classical interatomic potentials." @default.
- W4386944054 created "2023-09-23" @default.
- W4386944054 creator A5002104129 @default.
- W4386944054 creator A5043201418 @default.
- W4386944054 creator A5054623889 @default.
- W4386944054 date "2023-09-22" @default.
- W4386944054 modified "2023-10-16" @default.
- W4386944054 title "Machine-Learning Accelerated First-Principles Accurate Modeling of the Solid–Liquid Phase Transition in MgO under Mantle Conditions" @default.
- W4386944054 cites W1485388173 @default.
- W4386944054 cites W1907325087 @default.
- W4386944054 cites W1967053212 @default.
- W4386944054 cites W1969722044 @default.
- W4386944054 cites W1970045349 @default.
- W4386944054 cites W1970127494 @default.
- W4386944054 cites W1973998055 @default.
- W4386944054 cites W1974258862 @default.
- W4386944054 cites W1979156717 @default.
- W4386944054 cites W1983881950 @default.
- W4386944054 cites W1992381387 @default.
- W4386944054 cites W1994985367 @default.
- W4386944054 cites W2003178221 @default.
- W4386944054 cites W2007898019 @default.
- W4386944054 cites W2014136138 @default.
- W4386944054 cites W2016197031 @default.
- W4386944054 cites W2025444507 @default.
- W4386944054 cites W2027795608 @default.
- W4386944054 cites W2041902442 @default.
- W4386944054 cites W2048680646 @default.
- W4386944054 cites W2052276650 @default.
- W4386944054 cites W2058014257 @default.
- W4386944054 cites W2062221814 @default.
- W4386944054 cites W2073147581 @default.
- W4386944054 cites W2083222334 @default.
- W4386944054 cites W2083415705 @default.
- W4386944054 cites W2090017461 @default.
- W4386944054 cites W2092867493 @default.
- W4386944054 cites W2093599820 @default.
- W4386944054 cites W2103523031 @default.
- W4386944054 cites W2115944277 @default.
- W4386944054 cites W2135193407 @default.
- W4386944054 cites W2136312894 @default.
- W4386944054 cites W2138941593 @default.
- W4386944054 cites W2141580335 @default.
- W4386944054 cites W2145117981 @default.
- W4386944054 cites W2149073215 @default.
- W4386944054 cites W2155398760 @default.
- W4386944054 cites W2197007850 @default.
- W4386944054 cites W2315081775 @default.
- W4386944054 cites W2331734780 @default.
- W4386944054 cites W2336371268 @default.
- W4386944054 cites W2416465874 @default.
- W4386944054 cites W2492496364 @default.
- W4386944054 cites W256102347 @default.
- W4386944054 cites W2621433568 @default.
- W4386944054 cites W2775708988 @default.
- W4386944054 cites W2792327595 @default.
- W4386944054 cites W2803592916 @default.
- W4386944054 cites W2916864904 @default.
- W4386944054 cites W2944649260 @default.
- W4386944054 cites W3016785433 @default.
- W4386944054 cites W3045771481 @default.
- W4386944054 cites W3084233865 @default.
- W4386944054 cites W3094154399 @default.
- W4386944054 cites W3105377648 @default.
- W4386944054 cites W3165825885 @default.
- W4386944054 cites W3176872900 @default.
- W4386944054 cites W3193871032 @default.
- W4386944054 cites W3201073812 @default.
- W4386944054 cites W4205426733 @default.
- W4386944054 cites W4205778048 @default.
- W4386944054 cites W4207004514 @default.
- W4386944054 cites W4223499749 @default.
- W4386944054 cites W4283316415 @default.
- W4386944054 cites W4291036932 @default.
- W4386944054 cites W4313855971 @default.
- W4386944054 cites W4319656299 @default.
- W4386944054 cites W4322494962 @default.
- W4386944054 cites W4384825749 @default.
- W4386944054 cites W4385294648 @default.
- W4386944054 doi "https://doi.org/10.1021/acs.jpclett.3c02424" @default.
- W4386944054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37738009" @default.
- W4386944054 hasPublicationYear "2023" @default.
- W4386944054 type Work @default.
- W4386944054 citedByCount "0" @default.
- W4386944054 crossrefType "journal-article" @default.
- W4386944054 hasAuthorship W4386944054A5002104129 @default.
- W4386944054 hasAuthorship W4386944054A5043201418 @default.
- W4386944054 hasAuthorship W4386944054A5054623889 @default.
- W4386944054 hasConcept C104317684 @default.
- W4386944054 hasConcept C121332964 @default.
- W4386944054 hasConcept C121864883 @default.
- W4386944054 hasConcept C147597530 @default.
- W4386944054 hasConcept C149288129 @default.
- W4386944054 hasConcept C152365726 @default.
- W4386944054 hasConcept C159467904 @default.
- W4386944054 hasConcept C159985019 @default.
- W4386944054 hasConcept C185592680 @default.
- W4386944054 hasConcept C192562407 @default.