Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386947778> ?p ?o ?g. }
- W4386947778 endingPage "104303" @default.
- W4386947778 startingPage "104303" @default.
- W4386947778 abstract "The use of zero-valent iron (ZVI) for nitrate reduction has long been a topic of interest owing to its excellent reactivity compared to other inorganic electron donors. However, there is currently a lack of comprehensive and sophisticated models that can effectively integrate and analyze the dynamic data generated by this type of experiment. Such modeling is necessary to facilitate information mining and improve our understanding of the underlying mechanisms. Taking advantage of available published experimental data, a gradient-boosting decision tree and extreme gradient boosting were applied to 288 data points collected from peer-reviewed publications and compared with conventional non-tree-based models, i.e., artificial neural networks (ANN) and support vector regression (SVR). First, a predictive analysis was performed for the rate constant and the percentages of ammonium and nitrogen conversion using seven predictors related to ZVI properties, reactant concentration, and experimental parameters. Both tree-based models accurately predicted the target variables with comparable performance (R2 = 0.88–0.97) and outperformed ANN and SVR (R2 = 0.60–0.89). In addition, SHapley Additive exPlanations analysis revealed that ZVI properties (44 % average contribution) and experimental condition (68.5 % average contribution) were the key variables affecting the nitrate reduction rate constant and conversion product, respectively. Aerobic conditions were favorable for the conversion of nitrate to ammonium, with anoxic conditions being beneficial for the selectivity of nitrogen gas conversion. This study demonstrates a promising approach using machine learning with complex cross-system data for predicting the performance of water treatment and for mining valuable insights into the process by model interpretation. This method presents a new approach to revolutionize data analysis and modeling in water remediation, which can simplify the experimental operational burden." @default.
- W4386947778 created "2023-09-23" @default.
- W4386947778 creator A5020205466 @default.
- W4386947778 creator A5053397749 @default.
- W4386947778 creator A5068058714 @default.
- W4386947778 date "2023-12-01" @default.
- W4386947778 modified "2023-09-28" @default.
- W4386947778 title "Tree-based ensemble machine learning model for nitrate reduction by zero-valent iron" @default.
- W4386947778 cites W1678356000 @default.
- W4386947778 cites W1964246630 @default.
- W4386947778 cites W1964357740 @default.
- W4386947778 cites W1984452533 @default.
- W4386947778 cites W1993090167 @default.
- W4386947778 cites W2000732633 @default.
- W4386947778 cites W2002016471 @default.
- W4386947778 cites W2003196494 @default.
- W4386947778 cites W2004001981 @default.
- W4386947778 cites W2007094175 @default.
- W4386947778 cites W2010326083 @default.
- W4386947778 cites W2017000730 @default.
- W4386947778 cites W2021594267 @default.
- W4386947778 cites W2024188776 @default.
- W4386947778 cites W2031369243 @default.
- W4386947778 cites W2032145810 @default.
- W4386947778 cites W2034982239 @default.
- W4386947778 cites W2036594979 @default.
- W4386947778 cites W2041911040 @default.
- W4386947778 cites W2043585054 @default.
- W4386947778 cites W2052584803 @default.
- W4386947778 cites W2056827416 @default.
- W4386947778 cites W2056925586 @default.
- W4386947778 cites W2057040667 @default.
- W4386947778 cites W2059463753 @default.
- W4386947778 cites W2068018990 @default.
- W4386947778 cites W2078167964 @default.
- W4386947778 cites W2079356998 @default.
- W4386947778 cites W2079675288 @default.
- W4386947778 cites W2085756206 @default.
- W4386947778 cites W2088348866 @default.
- W4386947778 cites W2129888542 @default.
- W4386947778 cites W2133138357 @default.
- W4386947778 cites W2570945353 @default.
- W4386947778 cites W2610811490 @default.
- W4386947778 cites W2621190608 @default.
- W4386947778 cites W2745251380 @default.
- W4386947778 cites W2775125012 @default.
- W4386947778 cites W2779270216 @default.
- W4386947778 cites W2792152037 @default.
- W4386947778 cites W2884724274 @default.
- W4386947778 cites W2899750879 @default.
- W4386947778 cites W2905251331 @default.
- W4386947778 cites W2907918714 @default.
- W4386947778 cites W2910881901 @default.
- W4386947778 cites W2922706110 @default.
- W4386947778 cites W2985407284 @default.
- W4386947778 cites W3001372976 @default.
- W4386947778 cites W3004420857 @default.
- W4386947778 cites W3023669649 @default.
- W4386947778 cites W3023943971 @default.
- W4386947778 cites W3038447340 @default.
- W4386947778 cites W3043270278 @default.
- W4386947778 cites W3047111120 @default.
- W4386947778 cites W3096811296 @default.
- W4386947778 cites W3107568551 @default.
- W4386947778 cites W3114994086 @default.
- W4386947778 cites W3124059391 @default.
- W4386947778 cites W3127053039 @default.
- W4386947778 cites W3131373875 @default.
- W4386947778 cites W3136403714 @default.
- W4386947778 cites W3145821786 @default.
- W4386947778 cites W3158042977 @default.
- W4386947778 cites W3183218270 @default.
- W4386947778 cites W3186570958 @default.
- W4386947778 cites W3199552586 @default.
- W4386947778 cites W3201847245 @default.
- W4386947778 cites W3215952286 @default.
- W4386947778 cites W3217465620 @default.
- W4386947778 cites W4205394401 @default.
- W4386947778 cites W4212834337 @default.
- W4386947778 cites W4213444080 @default.
- W4386947778 cites W4220732966 @default.
- W4386947778 cites W4223539593 @default.
- W4386947778 cites W4226017353 @default.
- W4386947778 cites W4229005215 @default.
- W4386947778 cites W4232541886 @default.
- W4386947778 cites W4280564806 @default.
- W4386947778 cites W4281879267 @default.
- W4386947778 cites W4292004006 @default.
- W4386947778 cites W4295749486 @default.
- W4386947778 cites W4298342378 @default.
- W4386947778 cites W4307488594 @default.
- W4386947778 cites W4313825617 @default.
- W4386947778 cites W4319312238 @default.
- W4386947778 cites W4320085877 @default.
- W4386947778 cites W4362521255 @default.
- W4386947778 doi "https://doi.org/10.1016/j.jwpe.2023.104303" @default.
- W4386947778 hasPublicationYear "2023" @default.
- W4386947778 type Work @default.