Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386947897> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4386947897 endingPage "107168" @default.
- W4386947897 startingPage "107168" @default.
- W4386947897 abstract "Data classification is the most common task in machine learning, and feature selection is the key step in the classification task. Common feature selection methods mainly analyze the maximum correlation and minimum redundancy between feature factors and tags while ignoring the impact of the number of key features, which will inevitably lead to waste in subsequent classification training. To solve this problem, a feature selection algorithm (SSMI) based on the combination of sinusoidal sequences and mutual information is proposed. First, the mutual information between each feature and tag is calculated, and the interference information in high-dimensional data is removed according to the mutual information value. Second, a sine function is constructed, and sine ordering is carried out according to the mutual information value and feature mean value between different categories of the same feature. By adjusting the period and phase value of the sequence, the feature set with the largest difference is found, and the subset of key features is obtained. Finally, three machine learning classifiers (KNN, RF, SVM) are used to classify key feature subsets, and several feature selection algorithms (JMI, mRMR, CMIM, SFS, etc.) are compared to verify the advantages and disadvantages of different algorithms. Compared with other feature selection methods, the SSMI algorithm obtains the least number of key features, with an average reduction of 15 features. The average classification accuracy has been improved by 3% on the KNN classifier. On the HBV and SDHR datasets, the SSMI algorithm achieved classification accuracy of 81.26% and 83.12%, with sensitivity and specificity results of 76.28%, 87.39% and 68.14%, 86.11%, respectively. This shows that the SSMI algorithm can achieve higher classification accuracy with a smaller feature subset." @default.
- W4386947897 created "2023-09-23" @default.
- W4386947897 creator A5030429211 @default.
- W4386947897 creator A5045500170 @default.
- W4386947897 creator A5065522019 @default.
- W4386947897 date "2023-11-01" @default.
- W4386947897 modified "2023-10-16" @default.
- W4386947897 title "Feature selection using a sinusoidal sequence combined with mutual information" @default.
- W4386947897 cites W1992117549 @default.
- W4386947897 cites W2008794359 @default.
- W4386947897 cites W2081474178 @default.
- W4386947897 cites W2159543062 @default.
- W4386947897 cites W2167277498 @default.
- W4386947897 cites W2189540548 @default.
- W4386947897 cites W2211726952 @default.
- W4386947897 cites W2566089237 @default.
- W4386947897 cites W2791315675 @default.
- W4386947897 cites W2807770408 @default.
- W4386947897 cites W2899785659 @default.
- W4386947897 cites W2901312699 @default.
- W4386947897 cites W2915253732 @default.
- W4386947897 cites W2942615852 @default.
- W4386947897 cites W2946608181 @default.
- W4386947897 cites W2963157523 @default.
- W4386947897 cites W2971314194 @default.
- W4386947897 cites W2997803101 @default.
- W4386947897 cites W2999462857 @default.
- W4386947897 cites W3001998614 @default.
- W4386947897 cites W3033372010 @default.
- W4386947897 cites W3040916326 @default.
- W4386947897 cites W3097860219 @default.
- W4386947897 cites W3101080475 @default.
- W4386947897 cites W3125144398 @default.
- W4386947897 cites W3193549949 @default.
- W4386947897 cites W4285013136 @default.
- W4386947897 cites W4352976972 @default.
- W4386947897 cites W4367837660 @default.
- W4386947897 cites W4384382801 @default.
- W4386947897 doi "https://doi.org/10.1016/j.engappai.2023.107168" @default.
- W4386947897 hasPublicationYear "2023" @default.
- W4386947897 type Work @default.
- W4386947897 citedByCount "0" @default.
- W4386947897 crossrefType "journal-article" @default.
- W4386947897 hasAuthorship W4386947897A5030429211 @default.
- W4386947897 hasAuthorship W4386947897A5045500170 @default.
- W4386947897 hasAuthorship W4386947897A5065522019 @default.
- W4386947897 hasConcept C111919701 @default.
- W4386947897 hasConcept C113238511 @default.
- W4386947897 hasConcept C11413529 @default.
- W4386947897 hasConcept C12267149 @default.
- W4386947897 hasConcept C124101348 @default.
- W4386947897 hasConcept C138885662 @default.
- W4386947897 hasConcept C139532973 @default.
- W4386947897 hasConcept C148483581 @default.
- W4386947897 hasConcept C152124472 @default.
- W4386947897 hasConcept C152139883 @default.
- W4386947897 hasConcept C153180895 @default.
- W4386947897 hasConcept C154945302 @default.
- W4386947897 hasConcept C2776401178 @default.
- W4386947897 hasConcept C41008148 @default.
- W4386947897 hasConcept C41895202 @default.
- W4386947897 hasConcept C95623464 @default.
- W4386947897 hasConceptScore W4386947897C111919701 @default.
- W4386947897 hasConceptScore W4386947897C113238511 @default.
- W4386947897 hasConceptScore W4386947897C11413529 @default.
- W4386947897 hasConceptScore W4386947897C12267149 @default.
- W4386947897 hasConceptScore W4386947897C124101348 @default.
- W4386947897 hasConceptScore W4386947897C138885662 @default.
- W4386947897 hasConceptScore W4386947897C139532973 @default.
- W4386947897 hasConceptScore W4386947897C148483581 @default.
- W4386947897 hasConceptScore W4386947897C152124472 @default.
- W4386947897 hasConceptScore W4386947897C152139883 @default.
- W4386947897 hasConceptScore W4386947897C153180895 @default.
- W4386947897 hasConceptScore W4386947897C154945302 @default.
- W4386947897 hasConceptScore W4386947897C2776401178 @default.
- W4386947897 hasConceptScore W4386947897C41008148 @default.
- W4386947897 hasConceptScore W4386947897C41895202 @default.
- W4386947897 hasConceptScore W4386947897C95623464 @default.
- W4386947897 hasFunder F4320335769 @default.
- W4386947897 hasLocation W43869478971 @default.
- W4386947897 hasOpenAccess W4386947897 @default.
- W4386947897 hasPrimaryLocation W43869478971 @default.
- W4386947897 hasRelatedWork W2156571267 @default.
- W4386947897 hasRelatedWork W2350815964 @default.
- W4386947897 hasRelatedWork W2386078281 @default.
- W4386947897 hasRelatedWork W2517672762 @default.
- W4386947897 hasRelatedWork W2533731304 @default.
- W4386947897 hasRelatedWork W2747166117 @default.
- W4386947897 hasRelatedWork W2997083166 @default.
- W4386947897 hasRelatedWork W3037363193 @default.
- W4386947897 hasRelatedWork W3111660818 @default.
- W4386947897 hasRelatedWork W4287553507 @default.
- W4386947897 hasVolume "126" @default.
- W4386947897 isParatext "false" @default.
- W4386947897 isRetracted "false" @default.
- W4386947897 workType "article" @default.