Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386948103> ?p ?o ?g. }
- W4386948103 endingPage "233582" @default.
- W4386948103 startingPage "233582" @default.
- W4386948103 abstract "Rapid, in-situ Li-ion battery state-of-health (SOH) quantification is challenging. Li-ion battery aging can vary significantly with chemistry, operating conditions, cycling demands, electrode design, and operation history. As a cell ages, optimal and safe operating conditions need to be adapted to account for battery degradation by tracking critical aging modes such as loss-of-lithium-inventory (LLI), loss-of-active-material (LAM) in either electrode, and/or impedance rise. This manuscript describes a framework for identifying battery aging modes in-operando using fast-rate voltage charge/discharge responses. The framework uses a physically based Li-ion battery model to produce synthetic high-rate responses at aged states. The aging model is calibrated against experimental data from cells with different electrode loadings and cycled under a variety of fast-charging conditions (1 h, 15 min, 10 min, and 7 min charging). The synthetically generated high-rate responses at aged states are then used to train a deep-learning model to identify real cell state-of-health from fast charge/discharge battery voltage responses. The synthetically trained deep-learning model performance is validated by comparing to standard incremental capacity analysis and half-cell measurements. The framework demonstrates the benefits of using high-rate physics-based models to generate synthetic data for training deep-learning models." @default.
- W4386948103 created "2023-09-23" @default.
- W4386948103 creator A5018038426 @default.
- W4386948103 creator A5025297293 @default.
- W4386948103 creator A5028064484 @default.
- W4386948103 creator A5046026446 @default.
- W4386948103 creator A5047858603 @default.
- W4386948103 creator A5052954329 @default.
- W4386948103 creator A5061800926 @default.
- W4386948103 creator A5062764190 @default.
- W4386948103 creator A5089735346 @default.
- W4386948103 creator A5091162398 @default.
- W4386948103 date "2023-11-01" @default.
- W4386948103 modified "2023-09-29" @default.
- W4386948103 title "Battery state-of-health diagnostics during fast cycling using physics-informed deep-learning" @default.
- W4386948103 cites W1969722022 @default.
- W4386948103 cites W1969910044 @default.
- W4386948103 cites W1981388442 @default.
- W4386948103 cites W1992725137 @default.
- W4386948103 cites W1995447587 @default.
- W4386948103 cites W2009632951 @default.
- W4386948103 cites W2018530816 @default.
- W4386948103 cites W2022337187 @default.
- W4386948103 cites W2029675786 @default.
- W4386948103 cites W2036478923 @default.
- W4386948103 cites W2067740538 @default.
- W4386948103 cites W2077937117 @default.
- W4386948103 cites W2089525884 @default.
- W4386948103 cites W2113449668 @default.
- W4386948103 cites W2119298575 @default.
- W4386948103 cites W2154898252 @default.
- W4386948103 cites W2169518199 @default.
- W4386948103 cites W2340971382 @default.
- W4386948103 cites W2593630474 @default.
- W4386948103 cites W2621306575 @default.
- W4386948103 cites W2624326750 @default.
- W4386948103 cites W2765284883 @default.
- W4386948103 cites W2902305684 @default.
- W4386948103 cites W2924382816 @default.
- W4386948103 cites W2941505527 @default.
- W4386948103 cites W2943266146 @default.
- W4386948103 cites W2944008706 @default.
- W4386948103 cites W2944713305 @default.
- W4386948103 cites W2946947629 @default.
- W4386948103 cites W2973230658 @default.
- W4386948103 cites W2999951339 @default.
- W4386948103 cites W3005157773 @default.
- W4386948103 cites W3009336421 @default.
- W4386948103 cites W3010465417 @default.
- W4386948103 cites W3025760818 @default.
- W4386948103 cites W3035180715 @default.
- W4386948103 cites W3039517701 @default.
- W4386948103 cites W3088511886 @default.
- W4386948103 cites W3098374882 @default.
- W4386948103 cites W3098464136 @default.
- W4386948103 cites W3102947106 @default.
- W4386948103 cites W3118240767 @default.
- W4386948103 cites W3135410497 @default.
- W4386948103 cites W3135698256 @default.
- W4386948103 cites W3136490703 @default.
- W4386948103 cites W3159921680 @default.
- W4386948103 cites W3170092331 @default.
- W4386948103 cites W3178346666 @default.
- W4386948103 cites W3182605227 @default.
- W4386948103 cites W3184567139 @default.
- W4386948103 cites W3207967096 @default.
- W4386948103 cites W3214393594 @default.
- W4386948103 cites W3216633581 @default.
- W4386948103 cites W4200007308 @default.
- W4386948103 cites W4205899311 @default.
- W4386948103 cites W4206276094 @default.
- W4386948103 cites W4220872940 @default.
- W4386948103 cites W4280649360 @default.
- W4386948103 cites W4287577990 @default.
- W4386948103 cites W4288039298 @default.
- W4386948103 cites W4291746940 @default.
- W4386948103 cites W4292060475 @default.
- W4386948103 cites W4293224741 @default.
- W4386948103 cites W4297829302 @default.
- W4386948103 cites W4304809253 @default.
- W4386948103 cites W4308248304 @default.
- W4386948103 cites W4309836838 @default.
- W4386948103 cites W4310816178 @default.
- W4386948103 doi "https://doi.org/10.1016/j.jpowsour.2023.233582" @default.
- W4386948103 hasPublicationYear "2023" @default.
- W4386948103 type Work @default.
- W4386948103 citedByCount "0" @default.
- W4386948103 crossrefType "journal-article" @default.
- W4386948103 hasAuthorship W4386948103A5018038426 @default.
- W4386948103 hasAuthorship W4386948103A5025297293 @default.
- W4386948103 hasAuthorship W4386948103A5028064484 @default.
- W4386948103 hasAuthorship W4386948103A5046026446 @default.
- W4386948103 hasAuthorship W4386948103A5047858603 @default.
- W4386948103 hasAuthorship W4386948103A5052954329 @default.
- W4386948103 hasAuthorship W4386948103A5061800926 @default.
- W4386948103 hasAuthorship W4386948103A5062764190 @default.
- W4386948103 hasAuthorship W4386948103A5089735346 @default.
- W4386948103 hasAuthorship W4386948103A5091162398 @default.