Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386951689> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4386951689 endingPage "121964" @default.
- W4386951689 startingPage "121964" @default.
- W4386951689 abstract "With increasing renewable generation and demand response, the load profiles of distribution feeders become more fluctuating and uncertain, requiring real-time load estimation (RTLE) with high temporal granularity. Smart meters (SM) provide new data sources that have the potential to enable RTLE. However, it is cost prohibitive to communicate and process real-time high-resolution data from a massive number of SMs. To address the challenge, this paper proposes a novel solution to RTLE using High-Reporting-Rate SMs (HRRSMs) installed at a sparsely selected subset of customers in the feeder. The first step is to select customers for installing HRRSMs based on clustering, such that load profiles can best represent those of the others and the whole feeder. Then, a state-of-the-art Deep Learning (DL) model is trained to capture the relation between the historical load profiles of the selected customers and that of the feeder. Finally, real-time HRRSM data from the selective customers is fed to the trained model to perform RTLE with high resolution. The method is also robustified to address anomalies in real-time HRRSM data streams. The proposed method is validated on a large real-world SM dataset. Simulation results show that even with a small number of HRRSM installation, the proposed method can track feeder loads with much improved accuracy and temporal granularity compared with conventional methods based on historical data of regular SMs, providing a cost-effective solution to the monitoring of distribution feeder loads." @default.
- W4386951689 created "2023-09-23" @default.
- W4386951689 creator A5029525096 @default.
- W4386951689 creator A5051967314 @default.
- W4386951689 creator A5067446608 @default.
- W4386951689 creator A5068257993 @default.
- W4386951689 date "2023-12-01" @default.
- W4386951689 modified "2023-09-29" @default.
- W4386951689 title "Robust learning-based real-time load estimation using sparsely deployed smart meters with high reporting rates" @default.
- W4386951689 cites W2008668719 @default.
- W4386951689 cites W2032161710 @default.
- W4386951689 cites W2056114557 @default.
- W4386951689 cites W2057059632 @default.
- W4386951689 cites W2090883575 @default.
- W4386951689 cites W2209508536 @default.
- W4386951689 cites W2330456757 @default.
- W4386951689 cites W2343857612 @default.
- W4386951689 cites W2425916150 @default.
- W4386951689 cites W2583497101 @default.
- W4386951689 cites W2601171548 @default.
- W4386951689 cites W2754252319 @default.
- W4386951689 cites W2762503529 @default.
- W4386951689 cites W2786918196 @default.
- W4386951689 cites W2789768939 @default.
- W4386951689 cites W2919918000 @default.
- W4386951689 cites W2965751469 @default.
- W4386951689 cites W2974046511 @default.
- W4386951689 cites W2998310744 @default.
- W4386951689 cites W3022643593 @default.
- W4386951689 cites W3043498118 @default.
- W4386951689 cites W3105031020 @default.
- W4386951689 cites W3112644111 @default.
- W4386951689 cites W3154031915 @default.
- W4386951689 cites W3201755234 @default.
- W4386951689 cites W4200031948 @default.
- W4386951689 cites W4200545543 @default.
- W4386951689 cites W4297094900 @default.
- W4386951689 cites W4307298378 @default.
- W4386951689 cites W4307958708 @default.
- W4386951689 cites W4323922212 @default.
- W4386951689 cites W4366506447 @default.
- W4386951689 cites W4380995076 @default.
- W4386951689 doi "https://doi.org/10.1016/j.apenergy.2023.121964" @default.
- W4386951689 hasPublicationYear "2023" @default.
- W4386951689 type Work @default.
- W4386951689 citedByCount "0" @default.
- W4386951689 crossrefType "journal-article" @default.
- W4386951689 hasAuthorship W4386951689A5029525096 @default.
- W4386951689 hasAuthorship W4386951689A5051967314 @default.
- W4386951689 hasAuthorship W4386951689A5067446608 @default.
- W4386951689 hasAuthorship W4386951689A5068257993 @default.
- W4386951689 hasConcept C111919701 @default.
- W4386951689 hasConcept C119666444 @default.
- W4386951689 hasConcept C121332964 @default.
- W4386951689 hasConcept C124101348 @default.
- W4386951689 hasConcept C154945302 @default.
- W4386951689 hasConcept C177774035 @default.
- W4386951689 hasConcept C41008148 @default.
- W4386951689 hasConcept C62520636 @default.
- W4386951689 hasConcept C73555534 @default.
- W4386951689 hasConcept C79403827 @default.
- W4386951689 hasConcept C98045186 @default.
- W4386951689 hasConceptScore W4386951689C111919701 @default.
- W4386951689 hasConceptScore W4386951689C119666444 @default.
- W4386951689 hasConceptScore W4386951689C121332964 @default.
- W4386951689 hasConceptScore W4386951689C124101348 @default.
- W4386951689 hasConceptScore W4386951689C154945302 @default.
- W4386951689 hasConceptScore W4386951689C177774035 @default.
- W4386951689 hasConceptScore W4386951689C41008148 @default.
- W4386951689 hasConceptScore W4386951689C62520636 @default.
- W4386951689 hasConceptScore W4386951689C73555534 @default.
- W4386951689 hasConceptScore W4386951689C79403827 @default.
- W4386951689 hasConceptScore W4386951689C98045186 @default.
- W4386951689 hasLocation W43869516891 @default.
- W4386951689 hasOpenAccess W4386951689 @default.
- W4386951689 hasPrimaryLocation W43869516891 @default.
- W4386951689 hasRelatedWork W1599173567 @default.
- W4386951689 hasRelatedWork W2078531759 @default.
- W4386951689 hasRelatedWork W2352363108 @default.
- W4386951689 hasRelatedWork W2387100969 @default.
- W4386951689 hasRelatedWork W2389471107 @default.
- W4386951689 hasRelatedWork W2604389850 @default.
- W4386951689 hasRelatedWork W3119543425 @default.
- W4386951689 hasRelatedWork W4323646746 @default.
- W4386951689 hasRelatedWork W4379374430 @default.
- W4386951689 hasRelatedWork W99904291 @default.
- W4386951689 hasVolume "352" @default.
- W4386951689 isParatext "false" @default.
- W4386951689 isRetracted "false" @default.
- W4386951689 workType "article" @default.