Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386953328> ?p ?o ?g. }
- W4386953328 abstract "In recent years, the topic of electric traction has become increasingly important, with significant research efforts focused on developing more efficient and reliable electric motors for use in electric vehicles (EV). To ensure the reliable operation of these motors, it is essential to incorporate on-board diagnostic and prognostic tools that can detect and predict potential failures, induction machines have emerged as a popular choice for EV due to their durability and ability to handle high torque and variable speed applications. However, ensuring the health and reliability of these machines requires advanced diagnostic and prognostic techniques. In this context, this paper presents a study on the diagnostic and prognostic capabilities of machine learning models for an induction motor used in electric vehicle powertrain applications. The study aims to identify the most significant features of vibration signals collected from accelerometers attached to the motor, and to evaluate the effectiveness of Decision forest and decision tree machine learning algorithms in diagnosing and predicting the health of the motor. The models are trained on the full extracted features and the selected features using PCA and CA to classify the health condition of the motor. The comparison of the results from the different approaches demonstrates that the combination of the selected features using PCA with the Decision Forest algorithm achieves the best classification performance for the simulated motor fault conditions." @default.
- W4386953328 created "2023-09-23" @default.
- W4386953328 creator A5003616049 @default.
- W4386953328 creator A5017463855 @default.
- W4386953328 creator A5019772342 @default.
- W4386953328 creator A5057934571 @default.
- W4386953328 creator A5063193219 @default.
- W4386953328 creator A5087409742 @default.
- W4386953328 date "2023-07-19" @default.
- W4386953328 modified "2023-09-27" @default.
- W4386953328 title "Diagnostic and Prognostic Health Management of Electric Vehicle Powertrains : A Data Driven Approach for Induction Motor" @default.
- W4386953328 cites W1986926053 @default.
- W4386953328 cites W2094016738 @default.
- W4386953328 cites W2317595875 @default.
- W4386953328 cites W2344037786 @default.
- W4386953328 cites W2548535020 @default.
- W4386953328 cites W2913289332 @default.
- W4386953328 cites W2955612236 @default.
- W4386953328 cites W3020105602 @default.
- W4386953328 cites W3046922690 @default.
- W4386953328 cites W3093244114 @default.
- W4386953328 cites W3095570029 @default.
- W4386953328 cites W3096153045 @default.
- W4386953328 cites W3118799485 @default.
- W4386953328 cites W3195071730 @default.
- W4386953328 cites W3207268635 @default.
- W4386953328 cites W3210305734 @default.
- W4386953328 cites W3212100546 @default.
- W4386953328 cites W4200045774 @default.
- W4386953328 cites W4200470958 @default.
- W4386953328 cites W4205764857 @default.
- W4386953328 cites W4206095984 @default.
- W4386953328 cites W4206580646 @default.
- W4386953328 cites W4210762899 @default.
- W4386953328 cites W4220708837 @default.
- W4386953328 cites W4221098655 @default.
- W4386953328 cites W4224922524 @default.
- W4386953328 cites W4283025942 @default.
- W4386953328 cites W4283317342 @default.
- W4386953328 cites W4283389773 @default.
- W4386953328 cites W4289655960 @default.
- W4386953328 cites W4294169867 @default.
- W4386953328 cites W4303700098 @default.
- W4386953328 cites W4306933959 @default.
- W4386953328 cites W4320729691 @default.
- W4386953328 cites W4322629692 @default.
- W4386953328 cites W4324382270 @default.
- W4386953328 doi "https://doi.org/10.1109/iceccme57830.2023.10253328" @default.
- W4386953328 hasPublicationYear "2023" @default.
- W4386953328 type Work @default.
- W4386953328 citedByCount "0" @default.
- W4386953328 crossrefType "proceedings-article" @default.
- W4386953328 hasAuthorship W4386953328A5003616049 @default.
- W4386953328 hasAuthorship W4386953328A5017463855 @default.
- W4386953328 hasAuthorship W4386953328A5019772342 @default.
- W4386953328 hasAuthorship W4386953328A5057934571 @default.
- W4386953328 hasAuthorship W4386953328A5063193219 @default.
- W4386953328 hasAuthorship W4386953328A5087409742 @default.
- W4386953328 hasConcept C119599485 @default.
- W4386953328 hasConcept C119857082 @default.
- W4386953328 hasConcept C121332964 @default.
- W4386953328 hasConcept C127413603 @default.
- W4386953328 hasConcept C133731056 @default.
- W4386953328 hasConcept C136269787 @default.
- W4386953328 hasConcept C144171764 @default.
- W4386953328 hasConcept C151730666 @default.
- W4386953328 hasConcept C154945302 @default.
- W4386953328 hasConcept C163258240 @default.
- W4386953328 hasConcept C165801399 @default.
- W4386953328 hasConcept C171146098 @default.
- W4386953328 hasConcept C176871988 @default.
- W4386953328 hasConcept C2776422217 @default.
- W4386953328 hasConcept C2779343474 @default.
- W4386953328 hasConcept C41008148 @default.
- W4386953328 hasConcept C43214815 @default.
- W4386953328 hasConcept C62520636 @default.
- W4386953328 hasConcept C76047896 @default.
- W4386953328 hasConcept C78519656 @default.
- W4386953328 hasConcept C80962145 @default.
- W4386953328 hasConcept C84525736 @default.
- W4386953328 hasConcept C86803240 @default.
- W4386953328 hasConcept C97355855 @default.
- W4386953328 hasConceptScore W4386953328C119599485 @default.
- W4386953328 hasConceptScore W4386953328C119857082 @default.
- W4386953328 hasConceptScore W4386953328C121332964 @default.
- W4386953328 hasConceptScore W4386953328C127413603 @default.
- W4386953328 hasConceptScore W4386953328C133731056 @default.
- W4386953328 hasConceptScore W4386953328C136269787 @default.
- W4386953328 hasConceptScore W4386953328C144171764 @default.
- W4386953328 hasConceptScore W4386953328C151730666 @default.
- W4386953328 hasConceptScore W4386953328C154945302 @default.
- W4386953328 hasConceptScore W4386953328C163258240 @default.
- W4386953328 hasConceptScore W4386953328C165801399 @default.
- W4386953328 hasConceptScore W4386953328C171146098 @default.
- W4386953328 hasConceptScore W4386953328C176871988 @default.
- W4386953328 hasConceptScore W4386953328C2776422217 @default.
- W4386953328 hasConceptScore W4386953328C2779343474 @default.
- W4386953328 hasConceptScore W4386953328C41008148 @default.
- W4386953328 hasConceptScore W4386953328C43214815 @default.
- W4386953328 hasConceptScore W4386953328C62520636 @default.