Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386953728> ?p ?o ?g. }
- W4386953728 endingPage "e1011486" @default.
- W4386953728 startingPage "e1011486" @default.
- W4386953728 abstract "Sensory perception is dramatically influenced by the context. Models of contextual neural surround effects in vision have mostly accounted for Primary Visual Cortex (V1) data, via nonlinear computations such as divisive normalization. However, surround effects are not well understood within a hierarchy, for neurons with more complex stimulus selectivity beyond V1. We utilized feedforward deep convolutional neural networks and developed a gradient-based technique to visualize the most suppressive and excitatory surround. We found that deep neural networks exhibited a key signature of surround effects in V1, highlighting center stimuli that visually stand out from the surround and suppressing responses when the surround stimulus is similar to the center. We found that in some neurons, especially in late layers, when the center stimulus was altered, the most suppressive surround surprisingly can follow the change. Through the visualization approach, we generalized previous understanding of surround effects to more complex stimuli, in ways that have not been revealed in visual cortices. In contrast, the suppression based on center surround similarity was not observed in an untrained network. We identified further successes and mismatches of the feedforward CNNs to the biology. Our results provide a testable hypothesis of surround effects in higher visual cortices, and the visualization approach could be adopted in future biological experimental designs." @default.
- W4386953728 created "2023-09-23" @default.
- W4386953728 creator A5028553478 @default.
- W4386953728 creator A5063019872 @default.
- W4386953728 creator A5088494589 @default.
- W4386953728 date "2023-09-22" @default.
- W4386953728 modified "2023-10-14" @default.
- W4386953728 title "Generalizing biological surround suppression based on center surround similarity via deep neural network models" @default.
- W4386953728 cites W109907426 @default.
- W4386953728 cites W1497878968 @default.
- W4386953728 cites W1504757957 @default.
- W4386953728 cites W1530946731 @default.
- W4386953728 cites W1603926364 @default.
- W4386953728 cites W1860783201 @default.
- W4386953728 cites W1915485278 @default.
- W4386953728 cites W1966897368 @default.
- W4386953728 cites W1968735130 @default.
- W4386953728 cites W1969999680 @default.
- W4386953728 cites W1980605270 @default.
- W4386953728 cites W1988013646 @default.
- W4386953728 cites W1990879475 @default.
- W4386953728 cites W1992480897 @default.
- W4386953728 cites W1997585233 @default.
- W4386953728 cites W2008188887 @default.
- W4386953728 cites W2011439188 @default.
- W4386953728 cites W2011739339 @default.
- W4386953728 cites W2016990961 @default.
- W4386953728 cites W2018969932 @default.
- W4386953728 cites W2030711725 @default.
- W4386953728 cites W2039360139 @default.
- W4386953728 cites W2040036684 @default.
- W4386953728 cites W2046456242 @default.
- W4386953728 cites W2058616551 @default.
- W4386953728 cites W2062624347 @default.
- W4386953728 cites W2063497160 @default.
- W4386953728 cites W2069509089 @default.
- W4386953728 cites W2080218483 @default.
- W4386953728 cites W2106045181 @default.
- W4386953728 cites W2119885245 @default.
- W4386953728 cites W2123345231 @default.
- W4386953728 cites W2124196462 @default.
- W4386953728 cites W2127006916 @default.
- W4386953728 cites W2127048684 @default.
- W4386953728 cites W2131470433 @default.
- W4386953728 cites W2131566261 @default.
- W4386953728 cites W2131927014 @default.
- W4386953728 cites W2147619090 @default.
- W4386953728 cites W2155041580 @default.
- W4386953728 cites W2157698458 @default.
- W4386953728 cites W2165422719 @default.
- W4386953728 cites W2166883280 @default.
- W4386953728 cites W2171727778 @default.
- W4386953728 cites W2215103083 @default.
- W4386953728 cites W2246424376 @default.
- W4386953728 cites W2323067647 @default.
- W4386953728 cites W2378908843 @default.
- W4386953728 cites W2526754259 @default.
- W4386953728 cites W2611047781 @default.
- W4386953728 cites W2752092232 @default.
- W4386953728 cites W2763767712 @default.
- W4386953728 cites W2798163744 @default.
- W4386953728 cites W2898929289 @default.
- W4386953728 cites W2915254870 @default.
- W4386953728 cites W2931290242 @default.
- W4386953728 cites W2943083682 @default.
- W4386953728 cites W2949449018 @default.
- W4386953728 cites W2949512190 @default.
- W4386953728 cites W2949895299 @default.
- W4386953728 cites W2952231544 @default.
- W4386953728 cites W2952673047 @default.
- W4386953728 cites W2963138386 @default.
- W4386953728 cites W2966900272 @default.
- W4386953728 cites W2973950458 @default.
- W4386953728 cites W2986661129 @default.
- W4386953728 cites W2988313851 @default.
- W4386953728 cites W3044192874 @default.
- W4386953728 cites W3113280799 @default.
- W4386953728 cites W4214491798 @default.
- W4386953728 cites W4229494842 @default.
- W4386953728 cites W4313332881 @default.
- W4386953728 doi "https://doi.org/10.1371/journal.pcbi.1011486" @default.
- W4386953728 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37738258" @default.
- W4386953728 hasPublicationYear "2023" @default.
- W4386953728 type Work @default.
- W4386953728 citedByCount "0" @default.
- W4386953728 crossrefType "journal-article" @default.
- W4386953728 hasAuthorship W4386953728A5028553478 @default.
- W4386953728 hasAuthorship W4386953728A5063019872 @default.
- W4386953728 hasAuthorship W4386953728A5088494589 @default.
- W4386953728 hasBestOaLocation W43869537281 @default.
- W4386953728 hasConcept C127413603 @default.
- W4386953728 hasConcept C133731056 @default.
- W4386953728 hasConcept C153180895 @default.
- W4386953728 hasConcept C154945302 @default.
- W4386953728 hasConcept C15744967 @default.
- W4386953728 hasConcept C169760540 @default.
- W4386953728 hasConcept C178253425 @default.
- W4386953728 hasConcept C180747234 @default.