Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386954553> ?p ?o ?g. }
- W4386954553 abstract "Abstract Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a . The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming." @default.
- W4386954553 created "2023-09-23" @default.
- W4386954553 creator A5000429932 @default.
- W4386954553 creator A5004775654 @default.
- W4386954553 creator A5005355820 @default.
- W4386954553 creator A5005715181 @default.
- W4386954553 creator A5006019718 @default.
- W4386954553 creator A5006262545 @default.
- W4386954553 creator A5006518349 @default.
- W4386954553 creator A5007802462 @default.
- W4386954553 creator A5009082263 @default.
- W4386954553 creator A5011555000 @default.
- W4386954553 creator A5013766158 @default.
- W4386954553 creator A5014842254 @default.
- W4386954553 creator A5026858016 @default.
- W4386954553 creator A5027144722 @default.
- W4386954553 creator A5028123239 @default.
- W4386954553 creator A5029032681 @default.
- W4386954553 creator A5029912951 @default.
- W4386954553 creator A5030104268 @default.
- W4386954553 creator A5032942685 @default.
- W4386954553 creator A5044062369 @default.
- W4386954553 creator A5044652749 @default.
- W4386954553 creator A5051476078 @default.
- W4386954553 creator A5060196377 @default.
- W4386954553 creator A5065315162 @default.
- W4386954553 creator A5071062408 @default.
- W4386954553 creator A5072036957 @default.
- W4386954553 creator A5072348463 @default.
- W4386954553 creator A5074309419 @default.
- W4386954553 creator A5074475230 @default.
- W4386954553 creator A5074791594 @default.
- W4386954553 creator A5075674233 @default.
- W4386954553 creator A5079322740 @default.
- W4386954553 creator A5079546587 @default.
- W4386954553 creator A5080540002 @default.
- W4386954553 creator A5083642845 @default.
- W4386954553 creator A5088635327 @default.
- W4386954553 creator A5089685329 @default.
- W4386954553 creator A5090602839 @default.
- W4386954553 date "2023-09-22" @default.
- W4386954553 modified "2023-10-16" @default.
- W4386954553 title "Predicting global distributions of eukaryotic plankton communities from satellite data" @default.
- W4386954553 cites W1537452329 @default.
- W4386954553 cites W1597804721 @default.
- W4386954553 cites W1649447126 @default.
- W4386954553 cites W1751738436 @default.
- W4386954553 cites W1969126720 @default.
- W4386954553 cites W2011312755 @default.
- W4386954553 cites W2033533900 @default.
- W4386954553 cites W2036897871 @default.
- W4386954553 cites W2047940964 @default.
- W4386954553 cites W2051332595 @default.
- W4386954553 cites W2063312318 @default.
- W4386954553 cites W2081367793 @default.
- W4386954553 cites W2093463708 @default.
- W4386954553 cites W2106827959 @default.
- W4386954553 cites W2125736706 @default.
- W4386954553 cites W2136879569 @default.
- W4386954553 cites W2140039504 @default.
- W4386954553 cites W2141515878 @default.
- W4386954553 cites W2161872045 @default.
- W4386954553 cites W2162368885 @default.
- W4386954553 cites W2163330578 @default.
- W4386954553 cites W2166949492 @default.
- W4386954553 cites W2408104232 @default.
- W4386954553 cites W2493799904 @default.
- W4386954553 cites W2513506562 @default.
- W4386954553 cites W2560136348 @default.
- W4386954553 cites W2589592374 @default.
- W4386954553 cites W2594738842 @default.
- W4386954553 cites W2765747110 @default.
- W4386954553 cites W2769542288 @default.
- W4386954553 cites W2884633993 @default.
- W4386954553 cites W2943738598 @default.
- W4386954553 cites W2945440481 @default.
- W4386954553 cites W2963161248 @default.
- W4386954553 cites W2973520306 @default.
- W4386954553 cites W2988778168 @default.
- W4386954553 cites W3017156868 @default.
- W4386954553 cites W3030218091 @default.
- W4386954553 cites W3081695165 @default.
- W4386954553 cites W3083681173 @default.
- W4386954553 cites W3106188259 @default.
- W4386954553 cites W3154635658 @default.
- W4386954553 cites W3182084436 @default.
- W4386954553 cites W3195791820 @default.
- W4386954553 cites W4200619461 @default.
- W4386954553 cites W4223919638 @default.
- W4386954553 cites W4226475654 @default.
- W4386954553 cites W4287869566 @default.
- W4386954553 doi "https://doi.org/10.1038/s43705-023-00308-7" @default.
- W4386954553 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37740029" @default.
- W4386954553 hasPublicationYear "2023" @default.
- W4386954553 type Work @default.
- W4386954553 citedByCount "0" @default.
- W4386954553 crossrefType "journal-article" @default.
- W4386954553 hasAuthorship W4386954553A5000429932 @default.
- W4386954553 hasAuthorship W4386954553A5004775654 @default.
- W4386954553 hasAuthorship W4386954553A5005355820 @default.