Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386957654> ?p ?o ?g. }
- W4386957654 abstract "The response surface model has been widely used in slope reliability analysis owing to its efficiency. However, this method still has certain limitations, especially the curse of high dimensionality when considering the spatial variability of geotechnical parameters. The slice inverse regression dimensionality reduction method is efficient to obtaining the dimensionality-reduction variables from the original soil parameters space, before constructing the response surface. However, the dimensionality reduction process may cause accuracy deficiency due to the loss of variable information. An adaptive slope reliability analysis method is proposed to quantify and correct information loss and errors. Additionally, the slope failure probability based on the response surface in the dimensionality reduction space is modified to an unbiased one based on the finite model in the original space. In this study, two soil slopes considering spatial variability are taken as examples. The results illustrate that this method can effectively reduce the loss of accuracy in the dimensionality reduction process, while obtaining unbiased finite-element-based failure probability effectually. The method addresses the limitation whereby the accuracy of the dimensionality reduction process depends on the sample size and the number of dimensionality-reduction variables. Simultaneously, the proposed method significantly improves the computational efficiency of the sliced inverse regression method and realizes a reasonable dimensionality reduction effect, thereby improving the application of the response surface in practical slope reliability high-dimensional issues." @default.
- W4386957654 created "2023-09-23" @default.
- W4386957654 creator A5030751182 @default.
- W4386957654 creator A5051831169 @default.
- W4386957654 creator A5084038903 @default.
- W4386957654 creator A5085501381 @default.
- W4386957654 creator A5086162611 @default.
- W4386957654 date "2023-09-22" @default.
- W4386957654 modified "2023-09-29" @default.
- W4386957654 title "Adaptive slope reliability analysis method based on sliced inverse regression dimensionality reduction" @default.
- W4386957654 cites W1557892661 @default.
- W4386957654 cites W1581345788 @default.
- W4386957654 cites W1964818684 @default.
- W4386957654 cites W1965777485 @default.
- W4386957654 cites W1966837944 @default.
- W4386957654 cites W1967778131 @default.
- W4386957654 cites W1972545584 @default.
- W4386957654 cites W1973090811 @default.
- W4386957654 cites W1974904935 @default.
- W4386957654 cites W1975048675 @default.
- W4386957654 cites W1977391216 @default.
- W4386957654 cites W1979547539 @default.
- W4386957654 cites W1980635834 @default.
- W4386957654 cites W1980940040 @default.
- W4386957654 cites W1985413695 @default.
- W4386957654 cites W1997576274 @default.
- W4386957654 cites W1999091229 @default.
- W4386957654 cites W2003035369 @default.
- W4386957654 cites W2007535697 @default.
- W4386957654 cites W2008034786 @default.
- W4386957654 cites W2011529152 @default.
- W4386957654 cites W2027751236 @default.
- W4386957654 cites W2035053998 @default.
- W4386957654 cites W2036718988 @default.
- W4386957654 cites W2045355467 @default.
- W4386957654 cites W2045514380 @default.
- W4386957654 cites W2045744921 @default.
- W4386957654 cites W2046298174 @default.
- W4386957654 cites W2051730865 @default.
- W4386957654 cites W2054768786 @default.
- W4386957654 cites W2056173837 @default.
- W4386957654 cites W2056254225 @default.
- W4386957654 cites W2060913656 @default.
- W4386957654 cites W2063270803 @default.
- W4386957654 cites W2066924236 @default.
- W4386957654 cites W2072069695 @default.
- W4386957654 cites W2072256963 @default.
- W4386957654 cites W2075967518 @default.
- W4386957654 cites W2083415217 @default.
- W4386957654 cites W2083910000 @default.
- W4386957654 cites W2105270969 @default.
- W4386957654 cites W2123797571 @default.
- W4386957654 cites W2138901368 @default.
- W4386957654 cites W2164218280 @default.
- W4386957654 cites W2189812299 @default.
- W4386957654 cites W2398436715 @default.
- W4386957654 cites W2441798518 @default.
- W4386957654 cites W2731103645 @default.
- W4386957654 cites W2742506127 @default.
- W4386957654 cites W2753125409 @default.
- W4386957654 cites W2766267279 @default.
- W4386957654 cites W2789530761 @default.
- W4386957654 cites W2792986085 @default.
- W4386957654 cites W2810932392 @default.
- W4386957654 cites W2828853683 @default.
- W4386957654 cites W2900627259 @default.
- W4386957654 cites W2929404986 @default.
- W4386957654 cites W2935856865 @default.
- W4386957654 cites W2955255825 @default.
- W4386957654 cites W2962998905 @default.
- W4386957654 cites W2972534151 @default.
- W4386957654 cites W3003401083 @default.
- W4386957654 cites W3004932743 @default.
- W4386957654 cites W3014673353 @default.
- W4386957654 cites W3019645317 @default.
- W4386957654 cites W3027089092 @default.
- W4386957654 cites W3037992593 @default.
- W4386957654 cites W3038187968 @default.
- W4386957654 cites W3103869760 @default.
- W4386957654 cites W3122348753 @default.
- W4386957654 cites W3182483410 @default.
- W4386957654 cites W4224244173 @default.
- W4386957654 cites W4318957115 @default.
- W4386957654 cites W4324032858 @default.
- W4386957654 cites W4327560024 @default.
- W4386957654 cites W4365516738 @default.
- W4386957654 doi "https://doi.org/10.3389/fevo.2023.1257854" @default.
- W4386957654 hasPublicationYear "2023" @default.
- W4386957654 type Work @default.
- W4386957654 citedByCount "0" @default.
- W4386957654 crossrefType "journal-article" @default.
- W4386957654 hasAuthorship W4386957654A5030751182 @default.
- W4386957654 hasAuthorship W4386957654A5051831169 @default.
- W4386957654 hasAuthorship W4386957654A5084038903 @default.
- W4386957654 hasAuthorship W4386957654A5085501381 @default.
- W4386957654 hasAuthorship W4386957654A5086162611 @default.
- W4386957654 hasBestOaLocation W43869576541 @default.
- W4386957654 hasConcept C105795698 @default.
- W4386957654 hasConcept C111030470 @default.
- W4386957654 hasConcept C111335779 @default.