Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386960109> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4386960109 abstract "Machine learning (ML) techniques emerged as viable means for novel materials discovery and target property determination. At the vanguard of discoverable energy materials are perovskite crystalline materials, which are known for their robust design space and multifunctionality. Previous efforts for simulating the discovery of novel perovskites via ML have often been limited to straightforward tabular-dataset models and compositional phase-field representations. Therefore, the present study makes a contribution in expanding ML capability by demonstrating the efficacy of a new deep evolutionary learning framework for discovering stable and functional inorganic materials that adopts the complex <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=m1><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>B</mml:mi><mml:msup><mml:mi>B</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:msub><mml:mi>X</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=m2><mml:mrow><mml:mi>A</mml:mi><mml:msup><mml:mi>A</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mi>B</mml:mi><mml:msup><mml:mi>B</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:msub><mml:mi>X</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math> double perovskite stoichiometries. The model design is called the Evolutionary Variational Autoencoder for Perovskite Discovery (EVAPD), which is comprised of a semi-supervised variational autoencoder (SS-VAE), an evolutionary-based genetic algorithm, and a one-to-one similarity analytical model. The genetic algorithm performs adaptive metaheuristic search operations for finding the most theoretically stable candidates emerging from a target-learnable latent space of the generative SS-VAE model. The integrated similarity analytical model assesses the deviation in three-dimensional atomic coordination between newly generated perovskites and proven standards, and as such, recommends the most promising and experimentally feasible candidates. Using Density Functional Theory (DFT), the novel perovskites are subjected to thorough variable-cell optimization and property determination. The current study presents 137 new perovskite materials generated by the proposed EVAPD model and identifies potential candidates for photovoltaic and optoelectronic applications. The new materials data are archived at NOMAD repository ( doi.org/10.17172/NOMAD/2023.05.31-1 ) and are made openly available to interested users." @default.
- W4386960109 created "2023-09-23" @default.
- W4386960109 creator A5009283279 @default.
- W4386960109 creator A5040731655 @default.
- W4386960109 creator A5066354389 @default.
- W4386960109 date "2023-09-22" @default.
- W4386960109 modified "2023-09-29" @default.
- W4386960109 title "An evolutionary variational autoencoder for perovskite discovery" @default.
- W4386960109 cites W1965555277 @default.
- W4386960109 cites W1965828801 @default.
- W4386960109 cites W1967523495 @default.
- W4386960109 cites W1970127494 @default.
- W4386960109 cites W1975147762 @default.
- W4386960109 cites W1976492731 @default.
- W4386960109 cites W1979544533 @default.
- W4386960109 cites W1981368803 @default.
- W4386960109 cites W1992985800 @default.
- W4386960109 cites W2027995993 @default.
- W4386960109 cites W2029637177 @default.
- W4386960109 cites W2089872971 @default.
- W4386960109 cites W2112845989 @default.
- W4386960109 cites W2120145199 @default.
- W4386960109 cites W2147774191 @default.
- W4386960109 cites W2147802750 @default.
- W4386960109 cites W2164655924 @default.
- W4386960109 cites W2280467629 @default.
- W4386960109 cites W2344188443 @default.
- W4386960109 cites W2607375921 @default.
- W4386960109 cites W2612591418 @default.
- W4386960109 cites W2766856748 @default.
- W4386960109 cites W2767101995 @default.
- W4386960109 cites W2808484747 @default.
- W4386960109 cites W2913999598 @default.
- W4386960109 cites W2919043374 @default.
- W4386960109 cites W2946465527 @default.
- W4386960109 cites W2950873748 @default.
- W4386960109 cites W2964332384 @default.
- W4386960109 cites W2979285519 @default.
- W4386960109 cites W2992223360 @default.
- W4386960109 cites W3041603413 @default.
- W4386960109 cites W3044862054 @default.
- W4386960109 cites W3083787461 @default.
- W4386960109 cites W3097865746 @default.
- W4386960109 cites W3101694814 @default.
- W4386960109 cites W3105259638 @default.
- W4386960109 cites W3129039627 @default.
- W4386960109 cites W3162700235 @default.
- W4386960109 cites W3195604886 @default.
- W4386960109 cites W4220850924 @default.
- W4386960109 cites W4224219331 @default.
- W4386960109 cites W4225492233 @default.
- W4386960109 cites W4226198073 @default.
- W4386960109 cites W4283802707 @default.
- W4386960109 cites W4293428270 @default.
- W4386960109 cites W4298289240 @default.
- W4386960109 cites W4299956554 @default.
- W4386960109 cites W4300903698 @default.
- W4386960109 cites W4308799019 @default.
- W4386960109 cites W4311415873 @default.
- W4386960109 cites W4318310305 @default.
- W4386960109 doi "https://doi.org/10.3389/fmats.2023.1233961" @default.
- W4386960109 hasPublicationYear "2023" @default.
- W4386960109 type Work @default.
- W4386960109 citedByCount "0" @default.
- W4386960109 crossrefType "journal-article" @default.
- W4386960109 hasAuthorship W4386960109A5009283279 @default.
- W4386960109 hasAuthorship W4386960109A5040731655 @default.
- W4386960109 hasAuthorship W4386960109A5066354389 @default.
- W4386960109 hasBestOaLocation W43869601091 @default.
- W4386960109 hasConcept C101738243 @default.
- W4386960109 hasConcept C108583219 @default.
- W4386960109 hasConcept C11413529 @default.
- W4386960109 hasConcept C119857082 @default.
- W4386960109 hasConcept C154945302 @default.
- W4386960109 hasConcept C192562407 @default.
- W4386960109 hasConcept C41008148 @default.
- W4386960109 hasConceptScore W4386960109C101738243 @default.
- W4386960109 hasConceptScore W4386960109C108583219 @default.
- W4386960109 hasConceptScore W4386960109C11413529 @default.
- W4386960109 hasConceptScore W4386960109C119857082 @default.
- W4386960109 hasConceptScore W4386960109C154945302 @default.
- W4386960109 hasConceptScore W4386960109C192562407 @default.
- W4386960109 hasConceptScore W4386960109C41008148 @default.
- W4386960109 hasLocation W43869601091 @default.
- W4386960109 hasOpenAccess W4386960109 @default.
- W4386960109 hasPrimaryLocation W43869601091 @default.
- W4386960109 hasRelatedWork W2669956259 @default.
- W4386960109 hasRelatedWork W2899084033 @default.
- W4386960109 hasRelatedWork W2961085424 @default.
- W4386960109 hasRelatedWork W2998168123 @default.
- W4386960109 hasRelatedWork W3165463024 @default.
- W4386960109 hasRelatedWork W4220775285 @default.
- W4386960109 hasRelatedWork W4226497253 @default.
- W4386960109 hasRelatedWork W4287178339 @default.
- W4386960109 hasRelatedWork W4287995534 @default.
- W4386960109 hasRelatedWork W4306674287 @default.
- W4386960109 hasVolume "10" @default.
- W4386960109 isParatext "false" @default.
- W4386960109 isRetracted "false" @default.
- W4386960109 workType "article" @default.