Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386960741> ?p ?o ?g. }
- W4386960741 endingPage "1109" @default.
- W4386960741 startingPage "1109" @default.
- W4386960741 abstract "Artificial intelligence and machine learning (AI/ML) are playing increasingly important roles, permeating the field of medical devices (MDs). This rapid progress has not yet been matched by the Health Technology Assessment (HTA) process, which still needs to define a common methodology for assessing AI/ML-based MDs. To collect existing evidence from the literature about the methods used to assess AI-based MDs, with a specific focus on those used for the management of heart failure (HF), the International Federation of Medical and Biological Engineering (IFMBE) conducted a scoping meta-review. This manuscript presents the results of this search, which covered the period from January 1974 to October 2022. After careful independent screening, 21 reviews, mainly conducted in North America and Europe, were retained and included. Among the findings were that deep learning is the most commonly utilised method and that electronic health records and registries are among the most prevalent sources of data for AI/ML algorithms. Out of the 21 included reviews, 19 focused on risk prediction and/or the early diagnosis of HF. Furthermore, 10 reviews provided evidence of the impact on the incidence/progression of HF, and 13 on the length of stay. From an HTA perspective, the main areas requiring improvement are the quality assessment of studies on AI/ML (included in 11 out of 21 reviews) and their data sources, as well as the definition of the criteria used to assess the selection of the most appropriate AI/ML algorithm." @default.
- W4386960741 created "2023-09-23" @default.
- W4386960741 creator A5008841997 @default.
- W4386960741 creator A5021472133 @default.
- W4386960741 creator A5022638545 @default.
- W4386960741 creator A5029384288 @default.
- W4386960741 creator A5032329864 @default.
- W4386960741 creator A5034633748 @default.
- W4386960741 creator A5039129650 @default.
- W4386960741 creator A5041359909 @default.
- W4386960741 creator A5059081477 @default.
- W4386960741 creator A5064526111 @default.
- W4386960741 creator A5072282430 @default.
- W4386960741 creator A5088935367 @default.
- W4386960741 creator A5090617894 @default.
- W4386960741 date "2023-09-22" @default.
- W4386960741 modified "2023-10-03" @default.
- W4386960741 title "Scoping Meta-Review of Methods Used to Assess Artificial Intelligence-Based Medical Devices for Heart Failure" @default.
- W4386960741 cites W193161658 @default.
- W4386960741 cites W1988313317 @default.
- W4386960741 cites W2129618861 @default.
- W4386960741 cites W2148763706 @default.
- W4386960741 cites W2553101787 @default.
- W4386960741 cites W2583732076 @default.
- W4386960741 cites W2590381210 @default.
- W4386960741 cites W2603678388 @default.
- W4386960741 cites W2792896018 @default.
- W4386960741 cites W2891210725 @default.
- W4386960741 cites W2891378911 @default.
- W4386960741 cites W2973862952 @default.
- W4386960741 cites W2986224545 @default.
- W4386960741 cites W2994036840 @default.
- W4386960741 cites W3024478970 @default.
- W4386960741 cites W3035049698 @default.
- W4386960741 cites W3046138548 @default.
- W4386960741 cites W3084438218 @default.
- W4386960741 cites W3090507198 @default.
- W4386960741 cites W3106377951 @default.
- W4386960741 cites W3118615836 @default.
- W4386960741 cites W3118650257 @default.
- W4386960741 cites W3126809178 @default.
- W4386960741 cites W3133511216 @default.
- W4386960741 cites W3134138028 @default.
- W4386960741 cites W3134780297 @default.
- W4386960741 cites W3145086671 @default.
- W4386960741 cites W3164716110 @default.
- W4386960741 cites W3173393692 @default.
- W4386960741 cites W3180959755 @default.
- W4386960741 cites W3202884835 @default.
- W4386960741 cites W3203116568 @default.
- W4386960741 cites W4210937888 @default.
- W4386960741 cites W4225869382 @default.
- W4386960741 cites W4226155098 @default.
- W4386960741 cites W4280518374 @default.
- W4386960741 cites W4286470912 @default.
- W4386960741 cites W4293689835 @default.
- W4386960741 cites W4294636892 @default.
- W4386960741 cites W4294989675 @default.
- W4386960741 cites W4297997268 @default.
- W4386960741 cites W4300690111 @default.
- W4386960741 cites W4308055484 @default.
- W4386960741 cites W4308058756 @default.
- W4386960741 cites W4311111489 @default.
- W4386960741 cites W4315498015 @default.
- W4386960741 doi "https://doi.org/10.3390/bioengineering10101109" @default.
- W4386960741 hasPublicationYear "2023" @default.
- W4386960741 type Work @default.
- W4386960741 citedByCount "0" @default.
- W4386960741 crossrefType "journal-article" @default.
- W4386960741 hasAuthorship W4386960741A5008841997 @default.
- W4386960741 hasAuthorship W4386960741A5021472133 @default.
- W4386960741 hasAuthorship W4386960741A5022638545 @default.
- W4386960741 hasAuthorship W4386960741A5029384288 @default.
- W4386960741 hasAuthorship W4386960741A5032329864 @default.
- W4386960741 hasAuthorship W4386960741A5034633748 @default.
- W4386960741 hasAuthorship W4386960741A5039129650 @default.
- W4386960741 hasAuthorship W4386960741A5041359909 @default.
- W4386960741 hasAuthorship W4386960741A5059081477 @default.
- W4386960741 hasAuthorship W4386960741A5064526111 @default.
- W4386960741 hasAuthorship W4386960741A5072282430 @default.
- W4386960741 hasAuthorship W4386960741A5088935367 @default.
- W4386960741 hasAuthorship W4386960741A5090617894 @default.
- W4386960741 hasBestOaLocation W43869607411 @default.
- W4386960741 hasConcept C119857082 @default.
- W4386960741 hasConcept C154945302 @default.
- W4386960741 hasConcept C160735492 @default.
- W4386960741 hasConcept C162324750 @default.
- W4386960741 hasConcept C21333345 @default.
- W4386960741 hasConcept C2522767166 @default.
- W4386960741 hasConcept C41008148 @default.
- W4386960741 hasConcept C50522688 @default.
- W4386960741 hasConcept C71924100 @default.
- W4386960741 hasConceptScore W4386960741C119857082 @default.
- W4386960741 hasConceptScore W4386960741C154945302 @default.
- W4386960741 hasConceptScore W4386960741C160735492 @default.
- W4386960741 hasConceptScore W4386960741C162324750 @default.
- W4386960741 hasConceptScore W4386960741C21333345 @default.
- W4386960741 hasConceptScore W4386960741C2522767166 @default.