Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386960921> ?p ?o ?g. }
- W4386960921 endingPage "391" @default.
- W4386960921 startingPage "378" @default.
- W4386960921 abstract "Human motion prediction is a challenging and meaningful task in many fields. Recent work has shown that the Graphical Convolutional Network (GCN) based model is very effective for this task. However, a simple GCN cannot perfectly model dynamic information with different inputs. In addition, the blank adjacency matrix in GCN has an omnidirectional search space, making it difficult to converge. Different from existing approaches, this paper proposes a new GCN module, called Graph Convolution Module with Pattern affected Adjacency Matrix (GCN-PAAM), to enhance the adaptability of GCN to different inputs and improve the learning ability of adjacency matrix. We have applied this module to different advanced GCN based models. Experimental results on H3.6m and 3DPW datasets have shown that our module can improve the experimental accuracy of the model by 1% to 9% to varying degrees, achieving state-of-the-art performance." @default.
- W4386960921 created "2023-09-23" @default.
- W4386960921 creator A5003484876 @default.
- W4386960921 creator A5054137460 @default.
- W4386960921 date "2023-01-01" @default.
- W4386960921 modified "2023-09-29" @default.
- W4386960921 title "GCN with Pattern Affected Matrix in Human Motion Prediction" @default.
- W4386960921 cites W1735317348 @default.
- W4386960921 cites W1990429558 @default.
- W4386960921 cites W2025653905 @default.
- W4386960921 cites W2101032778 @default.
- W4386960921 cites W2158164339 @default.
- W4386960921 cites W2606517404 @default.
- W4386960921 cites W2802025241 @default.
- W4386960921 cites W2894846593 @default.
- W4386960921 cites W2895748257 @default.
- W4386960921 cites W2896588340 @default.
- W4386960921 cites W2902149428 @default.
- W4386960921 cites W2963065614 @default.
- W4386960921 cites W2963158576 @default.
- W4386960921 cites W2963165299 @default.
- W4386960921 cites W2963548793 @default.
- W4386960921 cites W2964203186 @default.
- W4386960921 cites W2971486392 @default.
- W4386960921 cites W2978927732 @default.
- W4386960921 cites W2979930345 @default.
- W4386960921 cites W2982573856 @default.
- W4386960921 cites W2983925976 @default.
- W4386960921 cites W2993797559 @default.
- W4386960921 cites W2994175816 @default.
- W4386960921 cites W3002101995 @default.
- W4386960921 cites W3034423770 @default.
- W4386960921 cites W3035545045 @default.
- W4386960921 cites W3036644940 @default.
- W4386960921 cites W3083688670 @default.
- W4386960921 cites W3085920015 @default.
- W4386960921 cites W3101017148 @default.
- W4386960921 cites W3101151469 @default.
- W4386960921 cites W3109174848 @default.
- W4386960921 cites W3109717189 @default.
- W4386960921 cites W3121052081 @default.
- W4386960921 cites W3174292795 @default.
- W4386960921 cites W3203785074 @default.
- W4386960921 cites W4230178929 @default.
- W4386960921 cites W4312774977 @default.
- W4386960921 cites W4313056154 @default.
- W4386960921 cites W4378804797 @default.
- W4386960921 doi "https://doi.org/10.1007/978-981-99-6187-0_38" @default.
- W4386960921 hasPublicationYear "2023" @default.
- W4386960921 type Work @default.
- W4386960921 citedByCount "0" @default.
- W4386960921 crossrefType "book-chapter" @default.
- W4386960921 hasAuthorship W4386960921A5003484876 @default.
- W4386960921 hasAuthorship W4386960921A5054137460 @default.
- W4386960921 hasConcept C106487976 @default.
- W4386960921 hasConcept C110484373 @default.
- W4386960921 hasConcept C111472728 @default.
- W4386960921 hasConcept C11413529 @default.
- W4386960921 hasConcept C127413603 @default.
- W4386960921 hasConcept C132525143 @default.
- W4386960921 hasConcept C138885662 @default.
- W4386960921 hasConcept C153180895 @default.
- W4386960921 hasConcept C154945302 @default.
- W4386960921 hasConcept C159985019 @default.
- W4386960921 hasConcept C177606310 @default.
- W4386960921 hasConcept C180356752 @default.
- W4386960921 hasConcept C18903297 @default.
- W4386960921 hasConcept C192562407 @default.
- W4386960921 hasConcept C201995342 @default.
- W4386960921 hasConcept C2780451532 @default.
- W4386960921 hasConcept C2780586882 @default.
- W4386960921 hasConcept C41008148 @default.
- W4386960921 hasConcept C45347329 @default.
- W4386960921 hasConcept C50644808 @default.
- W4386960921 hasConcept C80444323 @default.
- W4386960921 hasConcept C86803240 @default.
- W4386960921 hasConceptScore W4386960921C106487976 @default.
- W4386960921 hasConceptScore W4386960921C110484373 @default.
- W4386960921 hasConceptScore W4386960921C111472728 @default.
- W4386960921 hasConceptScore W4386960921C11413529 @default.
- W4386960921 hasConceptScore W4386960921C127413603 @default.
- W4386960921 hasConceptScore W4386960921C132525143 @default.
- W4386960921 hasConceptScore W4386960921C138885662 @default.
- W4386960921 hasConceptScore W4386960921C153180895 @default.
- W4386960921 hasConceptScore W4386960921C154945302 @default.
- W4386960921 hasConceptScore W4386960921C159985019 @default.
- W4386960921 hasConceptScore W4386960921C177606310 @default.
- W4386960921 hasConceptScore W4386960921C180356752 @default.
- W4386960921 hasConceptScore W4386960921C18903297 @default.
- W4386960921 hasConceptScore W4386960921C192562407 @default.
- W4386960921 hasConceptScore W4386960921C201995342 @default.
- W4386960921 hasConceptScore W4386960921C2780451532 @default.
- W4386960921 hasConceptScore W4386960921C2780586882 @default.
- W4386960921 hasConceptScore W4386960921C41008148 @default.
- W4386960921 hasConceptScore W4386960921C45347329 @default.
- W4386960921 hasConceptScore W4386960921C50644808 @default.
- W4386960921 hasConceptScore W4386960921C80444323 @default.
- W4386960921 hasConceptScore W4386960921C86803240 @default.