Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386963443> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4386963443 endingPage "646" @default.
- W4386963443 startingPage "634" @default.
- W4386963443 abstract "The identification of unhealthy plants in the crops at the early stage of cultivation helps for good farming. Unhealthy parts can be recognized using shape, color and texture, which are processed using feature extraction techniques. The feature extraction system stores the images in the matrix pixel format, which requires 3 channels for processing the images. Traditional neural networks utilize backpropagation techniques to adjust the random weights, which requires many resources while extracting a more significant number of features from a huge amount of data. These mechanisms also require more trainable parameters during the transformation of data from one layer to another. The proposed model implements the pre-trained model RESNET152 (Residual Network), which is efficient for feature extraction and designs the last layer of the network as a Tuned X-Gradient Boosting ensemble algorithm for performing the binary classification of tomato leaves. RESNET can reduce computational resources because it implements residual blocks which fasten the learning rate by skipping a few connections in the network. The fine-tuned ensemble model helps the model identify the best parameters quickly. The learnable parameters are the essential elements of any ML model because they can easily identify the patterns associated with the different features. In the proposed model for feature extraction, pattern matching is the crucial step. Therefore, it is very necessary to tune the XGBOOST algorithm. Compared to the traditional approaches, the proposed model enhanced the accuracy performance in training and testing with 98.58% and 95.56%, correspondingly" @default.
- W4386963443 created "2023-09-23" @default.
- W4386963443 creator A5000323314 @default.
- W4386963443 creator A5015613618 @default.
- W4386963443 date "2023-08-31" @default.
- W4386963443 modified "2023-09-30" @default.
- W4386963443 title "EHFT: An Ensembled Hyperopt Fine-Tuned Neural Network for Disease Detection in Tomato Plants" @default.
- W4386963443 doi "https://doi.org/10.17762/ijritcc.v11i9s.7478" @default.
- W4386963443 hasPublicationYear "2023" @default.
- W4386963443 type Work @default.
- W4386963443 citedByCount "0" @default.
- W4386963443 crossrefType "journal-article" @default.
- W4386963443 hasAuthorship W4386963443A5000323314 @default.
- W4386963443 hasAuthorship W4386963443A5015613618 @default.
- W4386963443 hasBestOaLocation W43869634431 @default.
- W4386963443 hasConcept C11413529 @default.
- W4386963443 hasConcept C124101348 @default.
- W4386963443 hasConcept C138885662 @default.
- W4386963443 hasConcept C153180895 @default.
- W4386963443 hasConcept C154945302 @default.
- W4386963443 hasConcept C155032097 @default.
- W4386963443 hasConcept C155512373 @default.
- W4386963443 hasConcept C169258074 @default.
- W4386963443 hasConcept C2776401178 @default.
- W4386963443 hasConcept C41008148 @default.
- W4386963443 hasConcept C41895202 @default.
- W4386963443 hasConcept C46686674 @default.
- W4386963443 hasConcept C50644808 @default.
- W4386963443 hasConcept C52622490 @default.
- W4386963443 hasConcept C70153297 @default.
- W4386963443 hasConceptScore W4386963443C11413529 @default.
- W4386963443 hasConceptScore W4386963443C124101348 @default.
- W4386963443 hasConceptScore W4386963443C138885662 @default.
- W4386963443 hasConceptScore W4386963443C153180895 @default.
- W4386963443 hasConceptScore W4386963443C154945302 @default.
- W4386963443 hasConceptScore W4386963443C155032097 @default.
- W4386963443 hasConceptScore W4386963443C155512373 @default.
- W4386963443 hasConceptScore W4386963443C169258074 @default.
- W4386963443 hasConceptScore W4386963443C2776401178 @default.
- W4386963443 hasConceptScore W4386963443C41008148 @default.
- W4386963443 hasConceptScore W4386963443C41895202 @default.
- W4386963443 hasConceptScore W4386963443C46686674 @default.
- W4386963443 hasConceptScore W4386963443C50644808 @default.
- W4386963443 hasConceptScore W4386963443C52622490 @default.
- W4386963443 hasConceptScore W4386963443C70153297 @default.
- W4386963443 hasIssue "9s" @default.
- W4386963443 hasLocation W43869634431 @default.
- W4386963443 hasOpenAccess W4386963443 @default.
- W4386963443 hasPrimaryLocation W43869634431 @default.
- W4386963443 hasRelatedWork W2546942002 @default.
- W4386963443 hasRelatedWork W2904870937 @default.
- W4386963443 hasRelatedWork W3095341758 @default.
- W4386963443 hasRelatedWork W3126348132 @default.
- W4386963443 hasRelatedWork W3160759841 @default.
- W4386963443 hasRelatedWork W3208169454 @default.
- W4386963443 hasRelatedWork W4293143576 @default.
- W4386963443 hasRelatedWork W4322710485 @default.
- W4386963443 hasRelatedWork W4383819855 @default.
- W4386963443 hasRelatedWork W4386690025 @default.
- W4386963443 hasVolume "11" @default.
- W4386963443 isParatext "false" @default.
- W4386963443 isRetracted "false" @default.
- W4386963443 workType "article" @default.