Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386965002> ?p ?o ?g. }
- W4386965002 endingPage "418" @default.
- W4386965002 startingPage "405" @default.
- W4386965002 abstract "Minimum error entropy with fiducial points (MEEF) has received a lot of attention, due to its outstanding performance to curb the negative influence caused by non-Gaussian noises in the fields of machine learning and signal processing. However, the estimate of the information potential of MEEF involves a double summation operator based on all available error samples, which can result in large computational burden in many practical scenarios. In this paper, an efficient quantization method is therefore adopted to represent the primary set of error samples with a smaller subset, generating a quantized MEEF (QMEEF). Some basic properties of QMEEF are presented and proved from theoretical perspectives. In addition, we have applied this new criterion to train a class of linear-in-parameters models, including the commonly used linear regression model, random vector functional link network, and broad learning system as special cases. Experimental results on various datasets are reported to demonstrate the desirable performance of the proposed methods to perform regression tasks with contaminated data." @default.
- W4386965002 created "2023-09-23" @default.
- W4386965002 creator A5020093525 @default.
- W4386965002 creator A5077852542 @default.
- W4386965002 creator A5090496649 @default.
- W4386965002 date "2023-11-01" @default.
- W4386965002 modified "2023-10-09" @default.
- W4386965002 title "Quantized minimum error entropy with fiducial points for robust regression" @default.
- W4386965002 cites W1882844461 @default.
- W4386965002 cites W1886566350 @default.
- W4386965002 cites W2071820974 @default.
- W4386965002 cites W2097521973 @default.
- W4386965002 cites W2124572691 @default.
- W4386965002 cites W2135160607 @default.
- W4386965002 cites W2138383519 @default.
- W4386965002 cites W2141767566 @default.
- W4386965002 cites W2145482409 @default.
- W4386965002 cites W2256521743 @default.
- W4386965002 cites W2522471716 @default.
- W4386965002 cites W2544053333 @default.
- W4386965002 cites W2561829981 @default.
- W4386965002 cites W2732779023 @default.
- W4386965002 cites W2738226240 @default.
- W4386965002 cites W2738427472 @default.
- W4386965002 cites W2753162851 @default.
- W4386965002 cites W2753295253 @default.
- W4386965002 cites W2784381726 @default.
- W4386965002 cites W2788630562 @default.
- W4386965002 cites W2789481185 @default.
- W4386965002 cites W2808007965 @default.
- W4386965002 cites W2888109343 @default.
- W4386965002 cites W2889731581 @default.
- W4386965002 cites W2890126432 @default.
- W4386965002 cites W2911067482 @default.
- W4386965002 cites W2911312752 @default.
- W4386965002 cites W2912162873 @default.
- W4386965002 cites W2946503551 @default.
- W4386965002 cites W2947320005 @default.
- W4386965002 cites W2963137067 @default.
- W4386965002 cites W2972958113 @default.
- W4386965002 cites W2997297215 @default.
- W4386965002 cites W3003453968 @default.
- W4386965002 cites W3034474794 @default.
- W4386965002 cites W3035624973 @default.
- W4386965002 cites W3045432329 @default.
- W4386965002 cites W3098805155 @default.
- W4386965002 cites W3099707999 @default.
- W4386965002 cites W3101444344 @default.
- W4386965002 cites W3102603179 @default.
- W4386965002 cites W3110671580 @default.
- W4386965002 cites W3176390087 @default.
- W4386965002 cites W3183331737 @default.
- W4386965002 cites W3199829435 @default.
- W4386965002 cites W4200125567 @default.
- W4386965002 cites W4220705325 @default.
- W4386965002 cites W4226120776 @default.
- W4386965002 cites W4309581574 @default.
- W4386965002 doi "https://doi.org/10.1016/j.neunet.2023.09.034" @default.
- W4386965002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37804744" @default.
- W4386965002 hasPublicationYear "2023" @default.
- W4386965002 type Work @default.
- W4386965002 citedByCount "0" @default.
- W4386965002 crossrefType "journal-article" @default.
- W4386965002 hasAuthorship W4386965002A5020093525 @default.
- W4386965002 hasAuthorship W4386965002A5077852542 @default.
- W4386965002 hasAuthorship W4386965002A5090496649 @default.
- W4386965002 hasConcept C105795698 @default.
- W4386965002 hasConcept C106301342 @default.
- W4386965002 hasConcept C11413529 @default.
- W4386965002 hasConcept C119857082 @default.
- W4386965002 hasConcept C121332964 @default.
- W4386965002 hasConcept C12267149 @default.
- W4386965002 hasConcept C152139883 @default.
- W4386965002 hasConcept C153180895 @default.
- W4386965002 hasConcept C154945302 @default.
- W4386965002 hasConcept C163716315 @default.
- W4386965002 hasConcept C173974348 @default.
- W4386965002 hasConcept C33923547 @default.
- W4386965002 hasConcept C41008148 @default.
- W4386965002 hasConcept C48921125 @default.
- W4386965002 hasConcept C62520636 @default.
- W4386965002 hasConcept C83546350 @default.
- W4386965002 hasConceptScore W4386965002C105795698 @default.
- W4386965002 hasConceptScore W4386965002C106301342 @default.
- W4386965002 hasConceptScore W4386965002C11413529 @default.
- W4386965002 hasConceptScore W4386965002C119857082 @default.
- W4386965002 hasConceptScore W4386965002C121332964 @default.
- W4386965002 hasConceptScore W4386965002C12267149 @default.
- W4386965002 hasConceptScore W4386965002C152139883 @default.
- W4386965002 hasConceptScore W4386965002C153180895 @default.
- W4386965002 hasConceptScore W4386965002C154945302 @default.
- W4386965002 hasConceptScore W4386965002C163716315 @default.
- W4386965002 hasConceptScore W4386965002C173974348 @default.
- W4386965002 hasConceptScore W4386965002C33923547 @default.
- W4386965002 hasConceptScore W4386965002C41008148 @default.
- W4386965002 hasConceptScore W4386965002C48921125 @default.
- W4386965002 hasConceptScore W4386965002C62520636 @default.
- W4386965002 hasConceptScore W4386965002C83546350 @default.