Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386967444> ?p ?o ?g. }
- W4386967444 endingPage "10560" @default.
- W4386967444 startingPage "10560" @default.
- W4386967444 abstract "Recently, human action recognition has gained widespread use in fields such as human–robot interaction, healthcare, and sports. With the popularity of wearable devices, we can easily access sensor data of human actions for human action recognition. However, extracting spatio-temporal motion patterns from sensor data and capturing fine-grained action processes remain a challenge. To address this problem, we proposed a novel hierarchical multi-scale adaptive Conv-LSTM network structure called HMA Conv-LSTM. The spatial information of sensor signals is extracted by hierarchical multi-scale convolution with finer-grained features, and the multi-channel features are fused by adaptive channel feature fusion to retain important information and improve the efficiency of the model. The dynamic channel-selection-LSTM based on the attention mechanism captures the temporal context information and long-term dependence of the sensor signals. Experimental results show that the proposed model achieves Macro F1-scores of 0.68, 0.91, 0.53, and 0.96 on four public datasets: Opportunity, PAMAP2, USC-HAD, and Skoda, respectively. Our model demonstrates competitive performance when compared to several state-of-the-art approaches." @default.
- W4386967444 created "2023-09-23" @default.
- W4386967444 creator A5033822228 @default.
- W4386967444 creator A5059065312 @default.
- W4386967444 creator A5069334991 @default.
- W4386967444 creator A5076899957 @default.
- W4386967444 creator A5079178505 @default.
- W4386967444 date "2023-09-22" @default.
- W4386967444 modified "2023-09-29" @default.
- W4386967444 title "Human Action Recognition Based on Hierarchical Multi-Scale Adaptive Conv-Long Short-Term Memory Network" @default.
- W4386967444 cites W1613249581 @default.
- W4386967444 cites W1969307352 @default.
- W4386967444 cites W1969877606 @default.
- W4386967444 cites W2008056655 @default.
- W4386967444 cites W2012557818 @default.
- W4386967444 cites W2023302299 @default.
- W4386967444 cites W2026297770 @default.
- W4386967444 cites W2047222258 @default.
- W4386967444 cites W2064675550 @default.
- W4386967444 cites W2097117768 @default.
- W4386967444 cites W2097575504 @default.
- W4386967444 cites W2105046342 @default.
- W4386967444 cites W2126511896 @default.
- W4386967444 cites W2144193487 @default.
- W4386967444 cites W2145343602 @default.
- W4386967444 cites W2148857358 @default.
- W4386967444 cites W2243012843 @default.
- W4386967444 cites W2270470215 @default.
- W4386967444 cites W2553915786 @default.
- W4386967444 cites W2596527850 @default.
- W4386967444 cites W2604630936 @default.
- W4386967444 cites W2736707111 @default.
- W4386967444 cites W2777460464 @default.
- W4386967444 cites W2894702700 @default.
- W4386967444 cites W2918488306 @default.
- W4386967444 cites W2919115771 @default.
- W4386967444 cites W2921732346 @default.
- W4386967444 cites W2963716982 @default.
- W4386967444 cites W2963993350 @default.
- W4386967444 cites W2965144482 @default.
- W4386967444 cites W2972118594 @default.
- W4386967444 cites W2995836393 @default.
- W4386967444 cites W2998467809 @default.
- W4386967444 cites W3044326989 @default.
- W4386967444 cites W3112478554 @default.
- W4386967444 cites W3113252785 @default.
- W4386967444 cites W3127571946 @default.
- W4386967444 cites W3133590696 @default.
- W4386967444 cites W3135450917 @default.
- W4386967444 cites W3136077883 @default.
- W4386967444 cites W3166747131 @default.
- W4386967444 cites W4294012891 @default.
- W4386967444 cites W4296642354 @default.
- W4386967444 cites W4307190332 @default.
- W4386967444 cites W4313463540 @default.
- W4386967444 cites W4376851377 @default.
- W4386967444 cites W4382345441 @default.
- W4386967444 doi "https://doi.org/10.3390/app131910560" @default.
- W4386967444 hasPublicationYear "2023" @default.
- W4386967444 type Work @default.
- W4386967444 citedByCount "0" @default.
- W4386967444 crossrefType "journal-article" @default.
- W4386967444 hasAuthorship W4386967444A5033822228 @default.
- W4386967444 hasAuthorship W4386967444A5059065312 @default.
- W4386967444 hasAuthorship W4386967444A5069334991 @default.
- W4386967444 hasAuthorship W4386967444A5076899957 @default.
- W4386967444 hasAuthorship W4386967444A5079178505 @default.
- W4386967444 hasBestOaLocation W43869674441 @default.
- W4386967444 hasConcept C119857082 @default.
- W4386967444 hasConcept C121332964 @default.
- W4386967444 hasConcept C121687571 @default.
- W4386967444 hasConcept C138885662 @default.
- W4386967444 hasConcept C149635348 @default.
- W4386967444 hasConcept C150594956 @default.
- W4386967444 hasConcept C151730666 @default.
- W4386967444 hasConcept C153180895 @default.
- W4386967444 hasConcept C154945302 @default.
- W4386967444 hasConcept C2776401178 @default.
- W4386967444 hasConcept C2777212361 @default.
- W4386967444 hasConcept C2778755073 @default.
- W4386967444 hasConcept C2779343474 @default.
- W4386967444 hasConcept C2780791683 @default.
- W4386967444 hasConcept C2987834672 @default.
- W4386967444 hasConcept C41008148 @default.
- W4386967444 hasConcept C41895202 @default.
- W4386967444 hasConcept C45347329 @default.
- W4386967444 hasConcept C50644808 @default.
- W4386967444 hasConcept C62520636 @default.
- W4386967444 hasConcept C86803240 @default.
- W4386967444 hasConceptScore W4386967444C119857082 @default.
- W4386967444 hasConceptScore W4386967444C121332964 @default.
- W4386967444 hasConceptScore W4386967444C121687571 @default.
- W4386967444 hasConceptScore W4386967444C138885662 @default.
- W4386967444 hasConceptScore W4386967444C149635348 @default.
- W4386967444 hasConceptScore W4386967444C150594956 @default.
- W4386967444 hasConceptScore W4386967444C151730666 @default.
- W4386967444 hasConceptScore W4386967444C153180895 @default.
- W4386967444 hasConceptScore W4386967444C154945302 @default.