Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386968609> ?p ?o ?g. }
- W4386968609 endingPage "121686" @default.
- W4386968609 startingPage "121686" @default.
- W4386968609 abstract "The dataset is crucial for the results of crack segmentation in deep learning. However, the quantity and quality of annotations in datasets used for crack segmentation are uneven, and there is a lack of dataset benchmarks. To address this issue, this paper proposes a dataset benchmark for pixel-level segmentation of concrete cracks based on a deep learning model. Firstly, the ability of Resnet-101, DRN, Xception, and Mobilenetv2 to extract crack features is evaluated to preferably select an appropriate backbone network for the DeepLabv3+ model. Secondly, based on the deep learning model and crack dataset, a universal calculation model is proposed to estimate the quantity benchmark of high-quality crack annotated samples, as well as the mixture ratio of high-quality and low-quality annotated samples. Additionally, a pixel-level visualization characterization method is constructed for inference results of crack edge details. The results show that the model with Resnet-101 as the backbone network exhibits significant performance, with pixel accuracy (PA), mean intersection-over-union (mIoU), and frequency-weighted intersection-over-union (FWIoU) reaching 99.76%, 95.05%, and 99.52%, respectively. The combination ratio of low-quality and high-quality annotated crack images has different effects on the model performance for datasets with different number of samples. The proposed benchmark for the concrete crack dataset holds engineering value and significance, and can be applied to improve model performance by accurately selecting appropriate methods, such as increasing the number of samples in the dataset or optimizing the model architecture, while minimizing the annotation time of the dataset." @default.
- W4386968609 created "2023-09-23" @default.
- W4386968609 creator A5030734060 @default.
- W4386968609 creator A5039736179 @default.
- W4386968609 creator A5051744790 @default.
- W4386968609 creator A5078940074 @default.
- W4386968609 date "2024-03-01" @default.
- W4386968609 modified "2023-10-15" @default.
- W4386968609 title "Investigation on the effect of data quality and quantity of concrete cracks on the performance of deep learning-based image segmentation" @default.
- W4386968609 cites W2093303892 @default.
- W4386968609 cites W2110764733 @default.
- W4386968609 cites W2325975990 @default.
- W4386968609 cites W2598457882 @default.
- W4386968609 cites W2768955070 @default.
- W4386968609 cites W2887597701 @default.
- W4386968609 cites W2889494142 @default.
- W4386968609 cites W2905163589 @default.
- W4386968609 cites W2905467392 @default.
- W4386968609 cites W2908667960 @default.
- W4386968609 cites W2920633487 @default.
- W4386968609 cites W2979396152 @default.
- W4386968609 cites W2995177923 @default.
- W4386968609 cites W3033645921 @default.
- W4386968609 cites W3045728369 @default.
- W4386968609 cites W3096338035 @default.
- W4386968609 cites W3133207539 @default.
- W4386968609 cites W3157286577 @default.
- W4386968609 cites W3190626583 @default.
- W4386968609 cites W3205191178 @default.
- W4386968609 cites W4200478585 @default.
- W4386968609 cites W4213012943 @default.
- W4386968609 cites W4293084662 @default.
- W4386968609 cites W4298619157 @default.
- W4386968609 cites W4306174035 @default.
- W4386968609 cites W4307210881 @default.
- W4386968609 cites W4313558962 @default.
- W4386968609 cites W4378190863 @default.
- W4386968609 doi "https://doi.org/10.1016/j.eswa.2023.121686" @default.
- W4386968609 hasPublicationYear "2024" @default.
- W4386968609 type Work @default.
- W4386968609 citedByCount "0" @default.
- W4386968609 crossrefType "journal-article" @default.
- W4386968609 hasAuthorship W4386968609A5030734060 @default.
- W4386968609 hasAuthorship W4386968609A5039736179 @default.
- W4386968609 hasAuthorship W4386968609A5051744790 @default.
- W4386968609 hasAuthorship W4386968609A5078940074 @default.
- W4386968609 hasConcept C108583219 @default.
- W4386968609 hasConcept C111472728 @default.
- W4386968609 hasConcept C119857082 @default.
- W4386968609 hasConcept C124101348 @default.
- W4386968609 hasConcept C127313418 @default.
- W4386968609 hasConcept C127413603 @default.
- W4386968609 hasConcept C13280743 @default.
- W4386968609 hasConcept C138885662 @default.
- W4386968609 hasConcept C146978453 @default.
- W4386968609 hasConcept C153180895 @default.
- W4386968609 hasConcept C154945302 @default.
- W4386968609 hasConcept C160633673 @default.
- W4386968609 hasConcept C162307627 @default.
- W4386968609 hasConcept C185798385 @default.
- W4386968609 hasConcept C2776214188 @default.
- W4386968609 hasConcept C2779530757 @default.
- W4386968609 hasConcept C41008148 @default.
- W4386968609 hasConcept C64543145 @default.
- W4386968609 hasConcept C89600930 @default.
- W4386968609 hasConceptScore W4386968609C108583219 @default.
- W4386968609 hasConceptScore W4386968609C111472728 @default.
- W4386968609 hasConceptScore W4386968609C119857082 @default.
- W4386968609 hasConceptScore W4386968609C124101348 @default.
- W4386968609 hasConceptScore W4386968609C127313418 @default.
- W4386968609 hasConceptScore W4386968609C127413603 @default.
- W4386968609 hasConceptScore W4386968609C13280743 @default.
- W4386968609 hasConceptScore W4386968609C138885662 @default.
- W4386968609 hasConceptScore W4386968609C146978453 @default.
- W4386968609 hasConceptScore W4386968609C153180895 @default.
- W4386968609 hasConceptScore W4386968609C154945302 @default.
- W4386968609 hasConceptScore W4386968609C160633673 @default.
- W4386968609 hasConceptScore W4386968609C162307627 @default.
- W4386968609 hasConceptScore W4386968609C185798385 @default.
- W4386968609 hasConceptScore W4386968609C2776214188 @default.
- W4386968609 hasConceptScore W4386968609C2779530757 @default.
- W4386968609 hasConceptScore W4386968609C41008148 @default.
- W4386968609 hasConceptScore W4386968609C64543145 @default.
- W4386968609 hasConceptScore W4386968609C89600930 @default.
- W4386968609 hasFunder F4320321001 @default.
- W4386968609 hasFunder F4320334978 @default.
- W4386968609 hasLocation W43869686091 @default.
- W4386968609 hasOpenAccess W4386968609 @default.
- W4386968609 hasPrimaryLocation W43869686091 @default.
- W4386968609 hasRelatedWork W2136485282 @default.
- W4386968609 hasRelatedWork W2546871836 @default.
- W4386968609 hasRelatedWork W2790662084 @default.
- W4386968609 hasRelatedWork W4223943233 @default.
- W4386968609 hasRelatedWork W4225161397 @default.
- W4386968609 hasRelatedWork W4312200629 @default.
- W4386968609 hasRelatedWork W4360585206 @default.
- W4386968609 hasRelatedWork W4364306694 @default.
- W4386968609 hasRelatedWork W4380075502 @default.