Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386969991> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4386969991 endingPage "188" @default.
- W4386969991 startingPage "173" @default.
- W4386969991 abstract "Accurate software defect prediction (SDP) helps to enhance the quality of the software by identifying potential flaws early in the development process. However, existing approaches face challenges in achieving reliable predictions. To address this, a novel approach is proposed that combines a two-tier-deep learning framework. The proposed work includes four major phases:(a) pre-processing, (b) Dimensionality reduction, (c) Feature Extraction and (d) Two-fold deep learning-based SDP. The collected raw data is initially pre-processed using a data cleaning approach (handling null values and missing data) and a Decimal scaling normalisation approach. The dimensions of the pre-processed data are reduced using the newly developed Incremental Covariance Principal Component Analysis (ICPCA), and this approach aids in solving the “curse of dimensionality” issue. Then, onto the dimensionally reduced data, the feature extraction is performed using statistical features (standard deviation, skewness, variance, and kurtosis), Mutual information (MI), and Conditional entropy (CE). From the extracted features, the relevant ones are selected using the new Euclidean Distance with Mean Absolute Deviation (ED-MAD). Finally, the SDP (decision making) is carried out using the optimized Two-Fold Deep Learning Framework (O-TFDLF), which encapsulates the RBFN and optimized MLP, respectively. The weight of MLP is fine-tuned using the new Levy Flight Cat Mouse Optimisation (LCMO) method to improve the model's prediction accuracy. The final detected outcome (forecasting the presence/ absence of defect) is acquired from optimized MLP. The implementation has been performed using the MATLAB software. By using certain performance metrics such as Sensitivity, Accuracy, Precision, Specificity and MSE the proposed model’s performance is compared to that of existing models. The accuracy achieved for the proposed model is 93.37%." @default.
- W4386969991 created "2023-09-23" @default.
- W4386969991 creator A5013004700 @default.
- W4386969991 creator A5051459398 @default.
- W4386969991 date "2023-08-31" @default.
- W4386969991 modified "2023-09-29" @default.
- W4386969991 title "Optimized Deeplearning Algorithm for Software Defects Prediction" @default.
- W4386969991 doi "https://doi.org/10.17762/ijritcc.v11i9s.7409" @default.
- W4386969991 hasPublicationYear "2023" @default.
- W4386969991 type Work @default.
- W4386969991 citedByCount "0" @default.
- W4386969991 crossrefType "journal-article" @default.
- W4386969991 hasAuthorship W4386969991A5013004700 @default.
- W4386969991 hasAuthorship W4386969991A5051459398 @default.
- W4386969991 hasBestOaLocation W43869699911 @default.
- W4386969991 hasConcept C105795698 @default.
- W4386969991 hasConcept C11413529 @default.
- W4386969991 hasConcept C119857082 @default.
- W4386969991 hasConcept C124101348 @default.
- W4386969991 hasConcept C153180895 @default.
- W4386969991 hasConcept C154945302 @default.
- W4386969991 hasConcept C166963901 @default.
- W4386969991 hasConcept C190502265 @default.
- W4386969991 hasConcept C199360897 @default.
- W4386969991 hasConcept C27438332 @default.
- W4386969991 hasConcept C2777904410 @default.
- W4386969991 hasConcept C33923547 @default.
- W4386969991 hasConcept C41008148 @default.
- W4386969991 hasConcept C50644808 @default.
- W4386969991 hasConcept C70518039 @default.
- W4386969991 hasConceptScore W4386969991C105795698 @default.
- W4386969991 hasConceptScore W4386969991C11413529 @default.
- W4386969991 hasConceptScore W4386969991C119857082 @default.
- W4386969991 hasConceptScore W4386969991C124101348 @default.
- W4386969991 hasConceptScore W4386969991C153180895 @default.
- W4386969991 hasConceptScore W4386969991C154945302 @default.
- W4386969991 hasConceptScore W4386969991C166963901 @default.
- W4386969991 hasConceptScore W4386969991C190502265 @default.
- W4386969991 hasConceptScore W4386969991C199360897 @default.
- W4386969991 hasConceptScore W4386969991C27438332 @default.
- W4386969991 hasConceptScore W4386969991C2777904410 @default.
- W4386969991 hasConceptScore W4386969991C33923547 @default.
- W4386969991 hasConceptScore W4386969991C41008148 @default.
- W4386969991 hasConceptScore W4386969991C50644808 @default.
- W4386969991 hasConceptScore W4386969991C70518039 @default.
- W4386969991 hasIssue "9s" @default.
- W4386969991 hasLocation W43869699911 @default.
- W4386969991 hasOpenAccess W4386969991 @default.
- W4386969991 hasPrimaryLocation W43869699911 @default.
- W4386969991 hasRelatedWork W2091080939 @default.
- W4386969991 hasRelatedWork W2151015462 @default.
- W4386969991 hasRelatedWork W2156005575 @default.
- W4386969991 hasRelatedWork W2380927352 @default.
- W4386969991 hasRelatedWork W2539272015 @default.
- W4386969991 hasRelatedWork W2810865670 @default.
- W4386969991 hasRelatedWork W2912687981 @default.
- W4386969991 hasRelatedWork W4237183406 @default.
- W4386969991 hasRelatedWork W4289435248 @default.
- W4386969991 hasRelatedWork W4289641120 @default.
- W4386969991 hasVolume "11" @default.
- W4386969991 isParatext "false" @default.
- W4386969991 isRetracted "false" @default.
- W4386969991 workType "article" @default.