Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386970124> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4386970124 endingPage "278" @default.
- W4386970124 startingPage "271" @default.
- W4386970124 abstract "Breast cancer is the most dangerous and deadly form of cancer. Initial detection of breast cancer can significantly improve treatment effectiveness. The second most common cancer among Indian women in rural areas. Early detection of symptoms and signs is the most important technique to effectively treat breast cancer, as it enhances the odds of receiving an earlier, more specialist care. As a result, it has the possible to significantly improve survival odds by delaying or entirely eliminating cancer. Mammography is a high-resolution radiography technique that is an important factor in avoiding and diagnosing cancer at an early stage. There are numerous procedures and approaches for detecting cancer in the tissues of the breast. This work presents the image processing, segmentation, and deep learning methodologies and approaches for the diagnosis of breast cancer. This research will help people make better decisions and use trustworthy techniques to find breast cancer early enough to save a woman's life. Pre-processing, segmentation, and classification are some of this system's steps. We've included a thorough study of several techniques or processes, along with information on how they're used and how performance is measured. The stated results lead to the conclusion that, in order to increase the chances of surviving breast cancer, it is crucial to develop new procedures or techniques for early diagnosis. For researchers to effectively diagnose breast cancer, segmentation and classification phases are also difficult. Therefore, the precise diagnosis and categorization of breast cancer still require the use of more advanced equipment and techniques." @default.
- W4386970124 created "2023-09-23" @default.
- W4386970124 creator A5005651225 @default.
- W4386970124 creator A5039009739 @default.
- W4386970124 date "2023-08-18" @default.
- W4386970124 modified "2023-09-29" @default.
- W4386970124 title "Breast Cancer Analytics Classification using MEFBUD DCNN Techniques" @default.
- W4386970124 doi "https://doi.org/10.17762/ijritcc.v11i8s.7206" @default.
- W4386970124 hasPublicationYear "2023" @default.
- W4386970124 type Work @default.
- W4386970124 citedByCount "0" @default.
- W4386970124 crossrefType "journal-article" @default.
- W4386970124 hasAuthorship W4386970124A5005651225 @default.
- W4386970124 hasAuthorship W4386970124A5039009739 @default.
- W4386970124 hasBestOaLocation W43869701241 @default.
- W4386970124 hasConcept C119857082 @default.
- W4386970124 hasConcept C121608353 @default.
- W4386970124 hasConcept C126322002 @default.
- W4386970124 hasConcept C143095724 @default.
- W4386970124 hasConcept C146357865 @default.
- W4386970124 hasConcept C151730666 @default.
- W4386970124 hasConcept C151956035 @default.
- W4386970124 hasConcept C154945302 @default.
- W4386970124 hasConcept C19527891 @default.
- W4386970124 hasConcept C2780472235 @default.
- W4386970124 hasConcept C41008148 @default.
- W4386970124 hasConcept C530470458 @default.
- W4386970124 hasConcept C71924100 @default.
- W4386970124 hasConcept C86803240 @default.
- W4386970124 hasConcept C89600930 @default.
- W4386970124 hasConcept C94124525 @default.
- W4386970124 hasConceptScore W4386970124C119857082 @default.
- W4386970124 hasConceptScore W4386970124C121608353 @default.
- W4386970124 hasConceptScore W4386970124C126322002 @default.
- W4386970124 hasConceptScore W4386970124C143095724 @default.
- W4386970124 hasConceptScore W4386970124C146357865 @default.
- W4386970124 hasConceptScore W4386970124C151730666 @default.
- W4386970124 hasConceptScore W4386970124C151956035 @default.
- W4386970124 hasConceptScore W4386970124C154945302 @default.
- W4386970124 hasConceptScore W4386970124C19527891 @default.
- W4386970124 hasConceptScore W4386970124C2780472235 @default.
- W4386970124 hasConceptScore W4386970124C41008148 @default.
- W4386970124 hasConceptScore W4386970124C530470458 @default.
- W4386970124 hasConceptScore W4386970124C71924100 @default.
- W4386970124 hasConceptScore W4386970124C86803240 @default.
- W4386970124 hasConceptScore W4386970124C89600930 @default.
- W4386970124 hasConceptScore W4386970124C94124525 @default.
- W4386970124 hasIssue "8s" @default.
- W4386970124 hasLocation W43869701241 @default.
- W4386970124 hasOpenAccess W4386970124 @default.
- W4386970124 hasPrimaryLocation W43869701241 @default.
- W4386970124 hasRelatedWork W2040397200 @default.
- W4386970124 hasRelatedWork W2356105190 @default.
- W4386970124 hasRelatedWork W2365213443 @default.
- W4386970124 hasRelatedWork W2748952813 @default.
- W4386970124 hasRelatedWork W2888998488 @default.
- W4386970124 hasRelatedWork W2899084033 @default.
- W4386970124 hasRelatedWork W2961085424 @default.
- W4386970124 hasRelatedWork W3198184493 @default.
- W4386970124 hasRelatedWork W4205775020 @default.
- W4386970124 hasRelatedWork W4306674287 @default.
- W4386970124 hasVolume "11" @default.
- W4386970124 isParatext "false" @default.
- W4386970124 isRetracted "false" @default.
- W4386970124 workType "article" @default.