Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386970909> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4386970909 abstract "Abstract Detection of mooring line failure of a floating vessel without any inputs of environmental conditions and/or directions can be made possible by measuring and analyzing vessel positions and headings, and also drafts in the case of an FPSO. This approach simplifies the required monitoring equipment and certainly helps in reducing cost and required maintenance. In addition to changing a vessel’s mean positions and headings, mooring line failure changes natural periods of the system. Therefore, to determine the condition of mooring lines and to detect mooring line failure, a dry monitoring system can (or needs to) detect subtle changes of natural periods of the system and variations in vessel headings as a function of vessel position and draft (or mass) for an FPSO. This task that can be categorized as pattern recognition and classification is very difficult to carry out with human visualization or conventional methods/tools to get to a reasonable detection rate. Although challenging, solving this task can be rewarding. This is an area that Artificial Intelligence (AI) is very good at, and AI can be an essential component of a reliable dry monitoring system. This paper presents several AI models, including Artificial Neural Networks (ANN), that can be used to determine the condition of mooring lines and to detect mooring line failure. This paper compares the performance of these AI models for a vessel’s loading condition (draft) that has not been included in the training of the models. This paper also discusses a method to enable an ANN model to be more tolerant and adaptive to new conditions and its applicability for other AI models. AI models can be used in combination with conventional digital methods (numerical algorithms) to determine the condition of mooring lines and to detect mooring line failure. This approach of combining AI models and conventional digital methods for a dry monitoring system requires knowing how and when to use AI models and conventional digital methods. This important aspect is illustrated in the presented examples on how the monitoring system detects mooring line failure in real time. These examples show the importance of AI and conventional digital methods and the significant contribution from each of them. This paper demonstrates that AI can be an important tool for a dry monitoring system of mooring lines and can be used in conjunction with conventional digital methods to increase the robustness of the solution. This application of AI is an example of the potential of AI in solving an engineering problem, which is otherwise difficult to solve using conventional methods/tools." @default.
- W4386970909 created "2023-09-23" @default.
- W4386970909 creator A5025732081 @default.
- W4386970909 creator A5054802025 @default.
- W4386970909 creator A5090986406 @default.
- W4386970909 date "2023-06-11" @default.
- W4386970909 modified "2023-09-29" @default.
- W4386970909 title "A Dry Monitoring System of Mooring Lines Utilizing Artificial Intelligence" @default.
- W4386970909 doi "https://doi.org/10.1115/omae2023-103160" @default.
- W4386970909 hasPublicationYear "2023" @default.
- W4386970909 type Work @default.
- W4386970909 citedByCount "0" @default.
- W4386970909 crossrefType "proceedings-article" @default.
- W4386970909 hasAuthorship W4386970909A5025732081 @default.
- W4386970909 hasAuthorship W4386970909A5054802025 @default.
- W4386970909 hasAuthorship W4386970909A5090986406 @default.
- W4386970909 hasConcept C119599485 @default.
- W4386970909 hasConcept C121332964 @default.
- W4386970909 hasConcept C127413603 @default.
- W4386970909 hasConcept C154945302 @default.
- W4386970909 hasConcept C168167062 @default.
- W4386970909 hasConcept C198352243 @default.
- W4386970909 hasConcept C199104240 @default.
- W4386970909 hasConcept C201995342 @default.
- W4386970909 hasConcept C2524010 @default.
- W4386970909 hasConcept C2775846686 @default.
- W4386970909 hasConcept C2780451532 @default.
- W4386970909 hasConcept C33923547 @default.
- W4386970909 hasConcept C41008148 @default.
- W4386970909 hasConcept C50644808 @default.
- W4386970909 hasConcept C97355855 @default.
- W4386970909 hasConcept C994952 @default.
- W4386970909 hasConceptScore W4386970909C119599485 @default.
- W4386970909 hasConceptScore W4386970909C121332964 @default.
- W4386970909 hasConceptScore W4386970909C127413603 @default.
- W4386970909 hasConceptScore W4386970909C154945302 @default.
- W4386970909 hasConceptScore W4386970909C168167062 @default.
- W4386970909 hasConceptScore W4386970909C198352243 @default.
- W4386970909 hasConceptScore W4386970909C199104240 @default.
- W4386970909 hasConceptScore W4386970909C201995342 @default.
- W4386970909 hasConceptScore W4386970909C2524010 @default.
- W4386970909 hasConceptScore W4386970909C2775846686 @default.
- W4386970909 hasConceptScore W4386970909C2780451532 @default.
- W4386970909 hasConceptScore W4386970909C33923547 @default.
- W4386970909 hasConceptScore W4386970909C41008148 @default.
- W4386970909 hasConceptScore W4386970909C50644808 @default.
- W4386970909 hasConceptScore W4386970909C97355855 @default.
- W4386970909 hasConceptScore W4386970909C994952 @default.
- W4386970909 hasLocation W43869709091 @default.
- W4386970909 hasOpenAccess W4386970909 @default.
- W4386970909 hasPrimaryLocation W43869709091 @default.
- W4386970909 hasRelatedWork W214738473 @default.
- W4386970909 hasRelatedWork W2356903436 @default.
- W4386970909 hasRelatedWork W2362808674 @default.
- W4386970909 hasRelatedWork W2363146980 @default.
- W4386970909 hasRelatedWork W2363517168 @default.
- W4386970909 hasRelatedWork W2375223719 @default.
- W4386970909 hasRelatedWork W2391780726 @default.
- W4386970909 hasRelatedWork W2959843566 @default.
- W4386970909 hasRelatedWork W592606397 @default.
- W4386970909 hasRelatedWork W334652555 @default.
- W4386970909 isParatext "false" @default.
- W4386970909 isRetracted "false" @default.
- W4386970909 workType "article" @default.