Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386973902> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4386973902 endingPage "15" @default.
- W4386973902 startingPage "1" @default.
- W4386973902 abstract "For fine-grained human perception tasks such as pose estimation and activity recognition, radar-based sensors show advantages over optical cameras in low-visibility, privacy-aware, and wall-occlusive environments. Radar transmits radio frequency signals to irradiate the target of interest and store the target information in the echo signals. One common approach is to transform the echoes into radar images and extract the features with convolutional neural networks. This article introduces RadarFormer, the first method that introduces the self-attention (SA) mechanism to perform human perception tasks directly from radar echoes. It bypasses the imaging algorithm and realizes end-to-end signal processing. Specifically, we give constructive proof that processing radar echoes using the SA mechanism is at least as expressive as processing radar images using the convolutional layer. On this foundation, we design RadarFormer, which is a Transformer-like model to process radar signals. It benefits from the fast-/slow-time SA mechanism considering the physical characteristics of radar signals. RadarFormer extracts human representations from radar echoes and handles various downstream human perception tasks. The experimental results demonstrate that our method outperforms the state-of-the-art radar-based methods both in performance and computational cost and obtains accurate human perception results even in dark and occlusive environments." @default.
- W4386973902 created "2023-09-23" @default.
- W4386973902 creator A5026160800 @default.
- W4386973902 creator A5031785556 @default.
- W4386973902 creator A5031881561 @default.
- W4386973902 creator A5058913315 @default.
- W4386973902 creator A5075844874 @default.
- W4386973902 date "2023-01-01" @default.
- W4386973902 modified "2023-09-29" @default.
- W4386973902 title "RadarFormer: End-to-End Human Perception With Through-Wall Radar and Transformers" @default.
- W4386973902 doi "https://doi.org/10.1109/tnnls.2023.3314031" @default.
- W4386973902 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37738194" @default.
- W4386973902 hasPublicationYear "2023" @default.
- W4386973902 type Work @default.
- W4386973902 citedByCount "0" @default.
- W4386973902 crossrefType "journal-article" @default.
- W4386973902 hasAuthorship W4386973902A5026160800 @default.
- W4386973902 hasAuthorship W4386973902A5031785556 @default.
- W4386973902 hasAuthorship W4386973902A5031881561 @default.
- W4386973902 hasAuthorship W4386973902A5058913315 @default.
- W4386973902 hasAuthorship W4386973902A5075844874 @default.
- W4386973902 hasConcept C10929652 @default.
- W4386973902 hasConcept C119599485 @default.
- W4386973902 hasConcept C127413603 @default.
- W4386973902 hasConcept C134406370 @default.
- W4386973902 hasConcept C154945302 @default.
- W4386973902 hasConcept C165801399 @default.
- W4386973902 hasConcept C169760540 @default.
- W4386973902 hasConcept C185565061 @default.
- W4386973902 hasConcept C26760741 @default.
- W4386973902 hasConcept C31972630 @default.
- W4386973902 hasConcept C41008148 @default.
- W4386973902 hasConcept C554190296 @default.
- W4386973902 hasConcept C59584813 @default.
- W4386973902 hasConcept C66322947 @default.
- W4386973902 hasConcept C76155785 @default.
- W4386973902 hasConcept C79403827 @default.
- W4386973902 hasConcept C81363708 @default.
- W4386973902 hasConcept C86803240 @default.
- W4386973902 hasConceptScore W4386973902C10929652 @default.
- W4386973902 hasConceptScore W4386973902C119599485 @default.
- W4386973902 hasConceptScore W4386973902C127413603 @default.
- W4386973902 hasConceptScore W4386973902C134406370 @default.
- W4386973902 hasConceptScore W4386973902C154945302 @default.
- W4386973902 hasConceptScore W4386973902C165801399 @default.
- W4386973902 hasConceptScore W4386973902C169760540 @default.
- W4386973902 hasConceptScore W4386973902C185565061 @default.
- W4386973902 hasConceptScore W4386973902C26760741 @default.
- W4386973902 hasConceptScore W4386973902C31972630 @default.
- W4386973902 hasConceptScore W4386973902C41008148 @default.
- W4386973902 hasConceptScore W4386973902C554190296 @default.
- W4386973902 hasConceptScore W4386973902C59584813 @default.
- W4386973902 hasConceptScore W4386973902C66322947 @default.
- W4386973902 hasConceptScore W4386973902C76155785 @default.
- W4386973902 hasConceptScore W4386973902C79403827 @default.
- W4386973902 hasConceptScore W4386973902C81363708 @default.
- W4386973902 hasConceptScore W4386973902C86803240 @default.
- W4386973902 hasFunder F4320321001 @default.
- W4386973902 hasFunder F4320327563 @default.
- W4386973902 hasLocation W43869739021 @default.
- W4386973902 hasLocation W43869739022 @default.
- W4386973902 hasOpenAccess W4386973902 @default.
- W4386973902 hasPrimaryLocation W43869739021 @default.
- W4386973902 hasRelatedWork W1510392950 @default.
- W4386973902 hasRelatedWork W1963931428 @default.
- W4386973902 hasRelatedWork W2023708958 @default.
- W4386973902 hasRelatedWork W2091887884 @default.
- W4386973902 hasRelatedWork W2099516561 @default.
- W4386973902 hasRelatedWork W2135972757 @default.
- W4386973902 hasRelatedWork W2154173676 @default.
- W4386973902 hasRelatedWork W2538429790 @default.
- W4386973902 hasRelatedWork W2807545795 @default.
- W4386973902 hasRelatedWork W3207185864 @default.
- W4386973902 isParatext "false" @default.
- W4386973902 isRetracted "false" @default.
- W4386973902 workType "article" @default.