Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386977071> ?p ?o ?g. }
- W4386977071 abstract "An $M$-type hexaferrite is a material with rich physical characteristics, such as magnetism, the dielectric property, and the magnetodielectric (MD) effect. In this paper, we systematically investigated the magnetic, dielectric, and MD properties of $mathrm{Ba}{mathrm{Fe}}_{12ensuremath{-}x}{mathrm{Me}}_{x}{mathrm{O}}_{19}$ ($mathit{Me}$ = Ga and In; $x=0.0$, 1.2, 1.8, and 2.4) ceramics prepared by a solid-state reaction method. The ${mathrm{Ga}}^{3+}$ cations with a smaller radius preferentially substitute the ${mathrm{Fe}}^{3+}$ ions in $mathrm{Fe}{mathrm{O}}_{6}$ octahedra, while the ${mathrm{In}}^{3+}$ cations with a larger radius tend to replace the ${mathrm{Fe}}^{3+}$ ions in $mathrm{Fe}{mathrm{O}}_{5}$ bipyramids of $R$ blocks, inducing different physical characteristics. The pure $mathrm{Ba}{mathrm{Fe}}_{12}{mathrm{O}}_{19}$ and Ga-doped samples show ferrimagnetism in the temperature range from 10 to 300 K. The In-doped samples exhibit a transition from noncollinear magnetism to collinear ferrimagnetism at 39, 128, and 144 K for the doping amounts of $x=1.2$, 1.8, and 2.4, respectively. The dielectric decrease of pure $mathrm{Ba}{mathrm{Fe}}_{12}{mathrm{O}}_{19}$ at $ensuremath{sim}10--175phantom{rule{0.16em}{0ex}}mathrm{K}$ is attributed to the quantum paraelectric state, and the shoulder peaks of tan $ensuremath{delta}$ at ensuremath{sim}140--200 K are from electron hopping. The dipole glass state is responsible for the dielectric peak of Ga-doped samples at $ensuremath{sim}20--40phantom{rule{0.16em}{0ex}}mathrm{K}$. The dielectric increase and plateau of In-doped samples are mainly ascribed to the electron hopping at low temperatures. Their dielectric properties at high temperatures are all attributed to the interfacial polarization caused by the Maxwell-Wagner effect. The MD effect also has different origins for the various samples at low temperatures. For pure $mathrm{Ba}{mathrm{Fe}}_{12}{mathrm{O}}_{19}$, the negative MD effect at extremely low temperatures and the positive MD effect after warming are ascribed to spin-phonon coupling and field-dependent electron hopping, respectively. The positive MD effect in Ga-doped hexaferrites results from the field-dependent electric dipoles inside $mathrm{Fe}{mathrm{O}}_{5}$ bipyramids. For the In-doped samples, the negative MD effect and subsequent transformation to the positive MD effect originate from the field-dependent noncollinear spin ordering and electron hopping, respectively. The MD effect at high temperatures is attributed to the combination of magnetoresistance and Maxwell-Wagner effects. These research results are helpful for understanding the relationship among doped ions, spin order, dielectric property, and the MD effect in $M$-type hexaferrites." @default.
- W4386977071 created "2023-09-23" @default.
- W4386977071 creator A5040267940 @default.
- W4386977071 creator A5049692788 @default.
- W4386977071 creator A5080877721 @default.
- W4386977071 creator A5087185793 @default.
- W4386977071 date "2023-09-22" @default.
- W4386977071 modified "2023-10-17" @default.
- W4386977071 title "Different mechanisms for dielectric, magnetic, and magnetodielectric properties in <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math> -type <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mi>Ba</mml:mi><mml:msub><mml:mi>Fe</mml:mi><mml:mn>12</mml:mn></mml:msub><mml:msub><mml:mi mathvariant=normal>O</mml:mi><mml:mn>19</mml:mn></mml:msub></mml:mrow></mml:math> hexaferrite by <mml:math xmlns:mml=http://www.w3.org/…" @default.
- W4386977071 cites W1506580641 @default.
- W4386977071 cites W1579462245 @default.
- W4386977071 cites W1585545725 @default.
- W4386977071 cites W1589031891 @default.
- W4386977071 cites W1798628789 @default.
- W4386977071 cites W1895362880 @default.
- W4386977071 cites W1902260404 @default.
- W4386977071 cites W1965106109 @default.
- W4386977071 cites W1967339010 @default.
- W4386977071 cites W1968242663 @default.
- W4386977071 cites W1985017624 @default.
- W4386977071 cites W1985508188 @default.
- W4386977071 cites W1986651169 @default.
- W4386977071 cites W1996623012 @default.
- W4386977071 cites W2007045586 @default.
- W4386977071 cites W2011907708 @default.
- W4386977071 cites W2020267115 @default.
- W4386977071 cites W2027181319 @default.
- W4386977071 cites W2033311481 @default.
- W4386977071 cites W2035848222 @default.
- W4386977071 cites W2044123100 @default.
- W4386977071 cites W2045905923 @default.
- W4386977071 cites W2049363426 @default.
- W4386977071 cites W2051336950 @default.
- W4386977071 cites W2051619086 @default.
- W4386977071 cites W2054597113 @default.
- W4386977071 cites W2055196728 @default.
- W4386977071 cites W2056924273 @default.
- W4386977071 cites W2057463669 @default.
- W4386977071 cites W2061517593 @default.
- W4386977071 cites W2072069770 @default.
- W4386977071 cites W2078353661 @default.
- W4386977071 cites W2083626681 @default.
- W4386977071 cites W2092911179 @default.
- W4386977071 cites W2121877814 @default.
- W4386977071 cites W2147438172 @default.
- W4386977071 cites W2279838836 @default.
- W4386977071 cites W2327836848 @default.
- W4386977071 cites W2402533607 @default.
- W4386977071 cites W2413412983 @default.
- W4386977071 cites W2559204571 @default.
- W4386977071 cites W2559882273 @default.
- W4386977071 cites W2572390816 @default.
- W4386977071 cites W2612030698 @default.
- W4386977071 cites W2625213475 @default.
- W4386977071 cites W2626691143 @default.
- W4386977071 cites W2736005245 @default.
- W4386977071 cites W2770512881 @default.
- W4386977071 cites W2888688510 @default.
- W4386977071 cites W2890417824 @default.
- W4386977071 cites W2899094050 @default.
- W4386977071 cites W2902752723 @default.
- W4386977071 cites W2904358726 @default.
- W4386977071 cites W2904705737 @default.
- W4386977071 cites W2922218496 @default.
- W4386977071 cites W2931472881 @default.
- W4386977071 cites W2949509484 @default.
- W4386977071 cites W2960194481 @default.
- W4386977071 cites W2996941097 @default.
- W4386977071 cites W3004401108 @default.
- W4386977071 cites W3011516721 @default.
- W4386977071 cites W3100403567 @default.
- W4386977071 cites W3108519520 @default.
- W4386977071 cites W3121344943 @default.
- W4386977071 cites W3132097460 @default.
- W4386977071 cites W3184007487 @default.
- W4386977071 cites W3204290353 @default.
- W4386977071 doi "https://doi.org/10.1103/physrevb.108.104418" @default.
- W4386977071 hasPublicationYear "2023" @default.
- W4386977071 type Work @default.
- W4386977071 citedByCount "0" @default.
- W4386977071 crossrefType "journal-article" @default.
- W4386977071 hasAuthorship W4386977071A5040267940 @default.
- W4386977071 hasAuthorship W4386977071A5049692788 @default.
- W4386977071 hasAuthorship W4386977071A5080877721 @default.
- W4386977071 hasAuthorship W4386977071A5087185793 @default.
- W4386977071 hasConcept C113196181 @default.
- W4386977071 hasConcept C115260700 @default.
- W4386977071 hasConcept C121332964 @default.
- W4386977071 hasConcept C133386390 @default.
- W4386977071 hasConcept C145148216 @default.
- W4386977071 hasConcept C185592680 @default.
- W4386977071 hasConcept C18903297 @default.
- W4386977071 hasConcept C192562407 @default.
- W4386977071 hasConcept C197162081 @default.
- W4386977071 hasConcept C198819137 @default.
- W4386977071 hasConcept C26873012 @default.
- W4386977071 hasConcept C2777299769 @default.
- W4386977071 hasConcept C32546565 @default.
- W4386977071 hasConcept C43617362 @default.
- W4386977071 hasConcept C57863236 @default.