Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386979860> ?p ?o ?g. }
- W4386979860 abstract "Abstract Professional medical experts use a visual electroencephalography (EEG) signal for epileptic seizure detection, although this method is time‐consuming and highly subject to bias. The majority of previous epileptic detection techniques have poor efficiency, detection performance and also which are unsuited to handle large datasets. In order to solve the aforementioned issues and to assist medical professionals with an advanced technology, a computerized epileptic seizure detection system is essential. Therefore, the proposed work intends to design an automated detection tool for predicting an epileptic seizure from EEG signals. For this purpose, a novel non‐linear feature analysis and deep learning algorithms are deployed in this work. Initially, the signal decomposition, filtering and artifacts removal operations are carried out with the use of finite Haar wavelet transformation technique. After that, the finite spectral entropy (FSE) based feature extraction model has been used to extract the time, frequency, and time‐frequency features from the normalized signal. Consequently, the novel gated term memory unit recursive network (GTRN) model is employed to predict the given EEG signal as whether healthy or seizure affected including the class with high accuracy. During this process, the recently developed Ladybug Beetle Optimization (LBO) algorithm is used to compute the logistic sigmoid function based on the solution. The purpose of using this algorithm is to simplify the process of classification with increased seizure prediction accuracy and performance. Moreover, the standard and popular benchmark EEG datasets are used to validate and test the results of the proposed FSE‐GTRN‐LBO mechanism. By leveraging the finite Haar wavelet transformation and FSE‐based feature extraction, we can efficiently process EEG signals. The utilization of the GTRN model enables accurate classification of healthy and seizure‐affected EEG data. To optimize the classification process further, we integrate the LBO algorithm, streamlining the computation of the logistic sigmoid function. Through comprehensive validation on standard EEG datasets, our proposed FSE‐GTRN‐LBO mechanism achieves outstanding seizure prediction accuracy and performance, surpassing existing state‐of‐the‐art techniques." @default.
- W4386979860 created "2023-09-24" @default.
- W4386979860 creator A5047424578 @default.
- W4386979860 creator A5075161586 @default.
- W4386979860 date "2023-09-23" @default.
- W4386979860 modified "2023-10-01" @default.
- W4386979860 title "A novel finite spectral entropy: Gated term memory unit recursive network integrated with Ladybug Beetle Optimization algorithm for epileptic seizure detection" @default.
- W4386979860 cites W2608948620 @default.
- W4386979860 cites W2915149867 @default.
- W4386979860 cites W2994921215 @default.
- W4386979860 cites W3087997944 @default.
- W4386979860 cites W3097682834 @default.
- W4386979860 cites W3131074363 @default.
- W4386979860 cites W3131943692 @default.
- W4386979860 cites W3160838270 @default.
- W4386979860 cites W3171973026 @default.
- W4386979860 cites W3185867485 @default.
- W4386979860 cites W3199160282 @default.
- W4386979860 cites W4200556691 @default.
- W4386979860 cites W4205808883 @default.
- W4386979860 cites W4206126837 @default.
- W4386979860 cites W4206244879 @default.
- W4386979860 cites W4206289001 @default.
- W4386979860 cites W4210470089 @default.
- W4386979860 cites W4214573271 @default.
- W4386979860 cites W4214608367 @default.
- W4386979860 cites W4214676731 @default.
- W4386979860 cites W4214932403 @default.
- W4386979860 cites W4221035317 @default.
- W4386979860 cites W4221098153 @default.
- W4386979860 cites W4224882656 @default.
- W4386979860 cites W4283034589 @default.
- W4386979860 cites W4283065622 @default.
- W4386979860 cites W4288514045 @default.
- W4386979860 cites W4294199633 @default.
- W4386979860 cites W4296108895 @default.
- W4386979860 cites W4296616178 @default.
- W4386979860 cites W4304692303 @default.
- W4386979860 cites W4308150438 @default.
- W4386979860 cites W4308427299 @default.
- W4386979860 cites W4323022427 @default.
- W4386979860 cites W4324069993 @default.
- W4386979860 cites W4327522906 @default.
- W4386979860 doi "https://doi.org/10.1002/cnm.3769" @default.
- W4386979860 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37740655" @default.
- W4386979860 hasPublicationYear "2023" @default.
- W4386979860 type Work @default.
- W4386979860 citedByCount "0" @default.
- W4386979860 crossrefType "journal-article" @default.
- W4386979860 hasAuthorship W4386979860A5047424578 @default.
- W4386979860 hasAuthorship W4386979860A5075161586 @default.
- W4386979860 hasBestOaLocation W43869798601 @default.
- W4386979860 hasConcept C106301342 @default.
- W4386979860 hasConcept C11413529 @default.
- W4386979860 hasConcept C118552586 @default.
- W4386979860 hasConcept C121332964 @default.
- W4386979860 hasConcept C13280743 @default.
- W4386979860 hasConcept C153180895 @default.
- W4386979860 hasConcept C154945302 @default.
- W4386979860 hasConcept C15744967 @default.
- W4386979860 hasConcept C185798385 @default.
- W4386979860 hasConcept C205649164 @default.
- W4386979860 hasConcept C2779334592 @default.
- W4386979860 hasConcept C41008148 @default.
- W4386979860 hasConcept C47432892 @default.
- W4386979860 hasConcept C522805319 @default.
- W4386979860 hasConcept C52622490 @default.
- W4386979860 hasConcept C62520636 @default.
- W4386979860 hasConceptScore W4386979860C106301342 @default.
- W4386979860 hasConceptScore W4386979860C11413529 @default.
- W4386979860 hasConceptScore W4386979860C118552586 @default.
- W4386979860 hasConceptScore W4386979860C121332964 @default.
- W4386979860 hasConceptScore W4386979860C13280743 @default.
- W4386979860 hasConceptScore W4386979860C153180895 @default.
- W4386979860 hasConceptScore W4386979860C154945302 @default.
- W4386979860 hasConceptScore W4386979860C15744967 @default.
- W4386979860 hasConceptScore W4386979860C185798385 @default.
- W4386979860 hasConceptScore W4386979860C205649164 @default.
- W4386979860 hasConceptScore W4386979860C2779334592 @default.
- W4386979860 hasConceptScore W4386979860C41008148 @default.
- W4386979860 hasConceptScore W4386979860C47432892 @default.
- W4386979860 hasConceptScore W4386979860C522805319 @default.
- W4386979860 hasConceptScore W4386979860C52622490 @default.
- W4386979860 hasConceptScore W4386979860C62520636 @default.
- W4386979860 hasLocation W43869798601 @default.
- W4386979860 hasLocation W43869798602 @default.
- W4386979860 hasOpenAccess W4386979860 @default.
- W4386979860 hasPrimaryLocation W43869798601 @default.
- W4386979860 hasRelatedWork W1964120219 @default.
- W4386979860 hasRelatedWork W2000165426 @default.
- W4386979860 hasRelatedWork W2053746507 @default.
- W4386979860 hasRelatedWork W2144059113 @default.
- W4386979860 hasRelatedWork W2146076056 @default.
- W4386979860 hasRelatedWork W2541950815 @default.
- W4386979860 hasRelatedWork W2544144554 @default.
- W4386979860 hasRelatedWork W2811390910 @default.
- W4386979860 hasRelatedWork W3003836766 @default.
- W4386979860 hasRelatedWork W2296457990 @default.
- W4386979860 isParatext "false" @default.
- W4386979860 isRetracted "false" @default.