Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386985013> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4386985013 endingPage "603" @default.
- W4386985013 startingPage "593" @default.
- W4386985013 abstract "The numerous strategies for the automated morphological categorization of galaxies, which uses a variety of supervised machine learning techniques, have not been well examined or compared. As the majority of star galaxy classifiers in use today use condensed summary data from catalogues, rigorous feature extraction and selection are required. With the aid of Deep Convolutional Neural Networks (CNN), a development in machine learning, it may automate the process of feature detection from data by a computer, therefore lowering the demand for qualified human input. Low-level artificial classification has made great progress. While this is the case, Deep Learning consistently outperforms traditional computers. analyzing large datasets while learning. We examine three machine learning techniques for categorizing morphological galaxies: Support Vector Machines (SVM), Random Forests (RF), and Naive Bayes (NB). We examine the efficacy of several machine learning algorithms on each feature representation of a galaxy using a collection of morphological features produced by image analysis as well as the raw image pixel data compressed using PCA (Principal Component Analysis) into PCA features. According to our experiments, RF outperformed SVM and NB. The remainder of the time, morphological features outperformed our PCA features in performance. Thus, the current mechanism is not extremely scalable. A probabilistic classifier that can scale, is based on source data, and requires the least amount of human interaction is essential to resolving these problems." @default.
- W4386985013 created "2023-09-24" @default.
- W4386985013 creator A5000019246 @default.
- W4386985013 creator A5003534957 @default.
- W4386985013 creator A5022515671 @default.
- W4386985013 creator A5040267474 @default.
- W4386985013 creator A5068793040 @default.
- W4386985013 creator A5081281059 @default.
- W4386985013 date "2023-01-01" @default.
- W4386985013 modified "2023-10-18" @default.
- W4386985013 title "A Novel Approach of Machine Learning Application in Astrophysics: Morphological Feature Wrapping Based Ensemble Method for Galaxy Shape Classification Using GAMA Dataset" @default.
- W4386985013 cites W2047250320 @default.
- W4386985013 cites W2617496418 @default.
- W4386985013 cites W2619812271 @default.
- W4386985013 cites W2883005809 @default.
- W4386985013 cites W2883341185 @default.
- W4386985013 cites W2911448443 @default.
- W4386985013 cites W3098591860 @default.
- W4386985013 cites W3105202218 @default.
- W4386985013 cites W3128679465 @default.
- W4386985013 cites W3208883800 @default.
- W4386985013 cites W4293493566 @default.
- W4386985013 doi "https://doi.org/10.1007/978-3-031-37164-6_43" @default.
- W4386985013 hasPublicationYear "2023" @default.
- W4386985013 type Work @default.
- W4386985013 citedByCount "0" @default.
- W4386985013 crossrefType "book-chapter" @default.
- W4386985013 hasAuthorship W4386985013A5000019246 @default.
- W4386985013 hasAuthorship W4386985013A5003534957 @default.
- W4386985013 hasAuthorship W4386985013A5022515671 @default.
- W4386985013 hasAuthorship W4386985013A5040267474 @default.
- W4386985013 hasAuthorship W4386985013A5068793040 @default.
- W4386985013 hasAuthorship W4386985013A5081281059 @default.
- W4386985013 hasConcept C119857082 @default.
- W4386985013 hasConcept C12267149 @default.
- W4386985013 hasConcept C148483581 @default.
- W4386985013 hasConcept C153180895 @default.
- W4386985013 hasConcept C154945302 @default.
- W4386985013 hasConcept C169258074 @default.
- W4386985013 hasConcept C41008148 @default.
- W4386985013 hasConcept C52001869 @default.
- W4386985013 hasConcept C81363708 @default.
- W4386985013 hasConceptScore W4386985013C119857082 @default.
- W4386985013 hasConceptScore W4386985013C12267149 @default.
- W4386985013 hasConceptScore W4386985013C148483581 @default.
- W4386985013 hasConceptScore W4386985013C153180895 @default.
- W4386985013 hasConceptScore W4386985013C154945302 @default.
- W4386985013 hasConceptScore W4386985013C169258074 @default.
- W4386985013 hasConceptScore W4386985013C41008148 @default.
- W4386985013 hasConceptScore W4386985013C52001869 @default.
- W4386985013 hasConceptScore W4386985013C81363708 @default.
- W4386985013 hasLocation W43869850131 @default.
- W4386985013 hasOpenAccess W4386985013 @default.
- W4386985013 hasPrimaryLocation W43869850131 @default.
- W4386985013 hasRelatedWork W2985924212 @default.
- W4386985013 hasRelatedWork W2996933976 @default.
- W4386985013 hasRelatedWork W3034132578 @default.
- W4386985013 hasRelatedWork W3036202055 @default.
- W4386985013 hasRelatedWork W3122308606 @default.
- W4386985013 hasRelatedWork W3168850895 @default.
- W4386985013 hasRelatedWork W4327511089 @default.
- W4386985013 hasRelatedWork W4361733514 @default.
- W4386985013 hasRelatedWork W4377964522 @default.
- W4386985013 hasRelatedWork W2345184372 @default.
- W4386985013 isParatext "false" @default.
- W4386985013 isRetracted "false" @default.
- W4386985013 workType "book-chapter" @default.