Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386985687> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4386985687 endingPage "319" @default.
- W4386985687 startingPage "309" @default.
- W4386985687 abstract "The Persian Gulf is one of the most important habitats in the Middle East. It can be extremely beneficial to aquatic species’ survival and environmental preservation to continuous monitoring and collect data about aquatic animals, their habitats, and behaviours. Finding a novel and suitable method to carry out accurate and automatic monitoring with low timing and low cost for monitoring aquatic species’ behaviour in this high potential area is helpful. To predict fish habitat in Persian Gulf Convolutional Neural Network method and Naïve Bayes algorithm are used. Deep learning convolutional neural network technology is mostly used for data science classification and recognition because of its exceptional accuracy and to solve search and optimization issues, the Naïve Bayes algorithm is employed. Results indicate for predicting fish habitat in the Persian Gulf, the accuracy of the Convolutional Neural Network algorithm and the Naïve Bayes algorithms is 97.32% and 95.47%, respectively. With p = 0.025 (p0.05), there is a substantial difference between the Naïve Bayes method and the Convolutional Neural Network algorithm. Therefore, The Convolutional Neural Network method seems to be more accurate than the Naïve Bayes method at predicting fish habitat in the Persian Gulf." @default.
- W4386985687 created "2023-09-24" @default.
- W4386985687 creator A5007970044 @default.
- W4386985687 creator A5043452497 @default.
- W4386985687 creator A5062509638 @default.
- W4386985687 creator A5073944601 @default.
- W4386985687 creator A5081281059 @default.
- W4386985687 creator A5086843885 @default.
- W4386985687 creator A5092927980 @default.
- W4386985687 date "2023-01-01" @default.
- W4386985687 modified "2023-10-01" @default.
- W4386985687 title "Predicting Fish Habitat in the Persian Gulf Using Artificial Intelligence" @default.
- W4386985687 cites W2765854388 @default.
- W4386985687 cites W2897654901 @default.
- W4386985687 cites W2911959833 @default.
- W4386985687 cites W2953500015 @default.
- W4386985687 cites W2966151507 @default.
- W4386985687 cites W2979377734 @default.
- W4386985687 cites W2996283780 @default.
- W4386985687 cites W3000622971 @default.
- W4386985687 cites W3006417263 @default.
- W4386985687 cites W3008692649 @default.
- W4386985687 cites W3014167299 @default.
- W4386985687 cites W3102100346 @default.
- W4386985687 cites W3189652569 @default.
- W4386985687 cites W4224111564 @default.
- W4386985687 cites W4306877582 @default.
- W4386985687 doi "https://doi.org/10.1007/978-3-031-37164-6_22" @default.
- W4386985687 hasPublicationYear "2023" @default.
- W4386985687 type Work @default.
- W4386985687 citedByCount "0" @default.
- W4386985687 crossrefType "book-chapter" @default.
- W4386985687 hasAuthorship W4386985687A5007970044 @default.
- W4386985687 hasAuthorship W4386985687A5043452497 @default.
- W4386985687 hasAuthorship W4386985687A5062509638 @default.
- W4386985687 hasAuthorship W4386985687A5073944601 @default.
- W4386985687 hasAuthorship W4386985687A5081281059 @default.
- W4386985687 hasAuthorship W4386985687A5086843885 @default.
- W4386985687 hasAuthorship W4386985687A5092927980 @default.
- W4386985687 hasConcept C107673813 @default.
- W4386985687 hasConcept C119857082 @default.
- W4386985687 hasConcept C12267149 @default.
- W4386985687 hasConcept C138885662 @default.
- W4386985687 hasConcept C154945302 @default.
- W4386985687 hasConcept C185933670 @default.
- W4386985687 hasConcept C18903297 @default.
- W4386985687 hasConcept C207201462 @default.
- W4386985687 hasConcept C2776527531 @default.
- W4386985687 hasConcept C2909208804 @default.
- W4386985687 hasConcept C41008148 @default.
- W4386985687 hasConcept C41895202 @default.
- W4386985687 hasConcept C505870484 @default.
- W4386985687 hasConcept C50644808 @default.
- W4386985687 hasConcept C52001869 @default.
- W4386985687 hasConcept C81363708 @default.
- W4386985687 hasConcept C86803240 @default.
- W4386985687 hasConceptScore W4386985687C107673813 @default.
- W4386985687 hasConceptScore W4386985687C119857082 @default.
- W4386985687 hasConceptScore W4386985687C12267149 @default.
- W4386985687 hasConceptScore W4386985687C138885662 @default.
- W4386985687 hasConceptScore W4386985687C154945302 @default.
- W4386985687 hasConceptScore W4386985687C185933670 @default.
- W4386985687 hasConceptScore W4386985687C18903297 @default.
- W4386985687 hasConceptScore W4386985687C207201462 @default.
- W4386985687 hasConceptScore W4386985687C2776527531 @default.
- W4386985687 hasConceptScore W4386985687C2909208804 @default.
- W4386985687 hasConceptScore W4386985687C41008148 @default.
- W4386985687 hasConceptScore W4386985687C41895202 @default.
- W4386985687 hasConceptScore W4386985687C505870484 @default.
- W4386985687 hasConceptScore W4386985687C50644808 @default.
- W4386985687 hasConceptScore W4386985687C52001869 @default.
- W4386985687 hasConceptScore W4386985687C81363708 @default.
- W4386985687 hasConceptScore W4386985687C86803240 @default.
- W4386985687 hasLocation W43869856871 @default.
- W4386985687 hasOpenAccess W4386985687 @default.
- W4386985687 hasPrimaryLocation W43869856871 @default.
- W4386985687 hasRelatedWork W1470425429 @default.
- W4386985687 hasRelatedWork W2086147528 @default.
- W4386985687 hasRelatedWork W2171665309 @default.
- W4386985687 hasRelatedWork W3014815208 @default.
- W4386985687 hasRelatedWork W3021430260 @default.
- W4386985687 hasRelatedWork W3027997911 @default.
- W4386985687 hasRelatedWork W3107602296 @default.
- W4386985687 hasRelatedWork W4205958290 @default.
- W4386985687 hasRelatedWork W4287776258 @default.
- W4386985687 hasRelatedWork W4306742369 @default.
- W4386985687 isParatext "false" @default.
- W4386985687 isRetracted "false" @default.
- W4386985687 workType "book-chapter" @default.