Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386989237> ?p ?o ?g. }
- W4386989237 endingPage "101361" @default.
- W4386989237 startingPage "101361" @default.
- W4386989237 abstract "Myocardial Infarction, commonly known as heart attack, is an extremely dangerous condition caused by inadequate blood flow to the heart. It is a major cause of death worldwide and swift appropriate actions need to be taken after hospitalization to save a patient's life. Clinicians need to be extremely cautious in handling such situations. A decision-support system predicting the risk in MI patients can be quite beneficial to clinicians. In this study, we develop such a system to predict the complications in MI patients immediately after hospitalization. In that regard, we utilized a dataset containing the records of 1700 MI patients. Class imbalance is a major concern in most medical datasets as it biases the predictions of the ML algorithms towards the majority (negative) class. Appropriate measures need to be taken to address the imbalance scenario and develop a reliable prediction system. In that regard, we propose a new approach that combines sampling techniques with cost-sensitive learning. The advantage of this hybrid approach is that it reduces the number of minority class samples required to be generated or the number of majority class samples needed to be eliminated to obtain balance. Additionally, it reduces the weight to be assigned as the penalty for the cost-sensitive classifier. The complications associated with using sampling or cost-sensitive learning separately are reduced by using this kind of hybridization. We hypothesize that a suitable balance between the two approaches can optimize the prediction performance. The proposed approach performed significantly better than both traditional sampling techniques and cost-sensitive learning. The highest ROC-AUC score of 80.88% and MCC score of 66.53% were achieved using this approach. External validation was also performed on 36 imbalanced datasets and the proposed methodology outperformed other popular techniques used in imbalanced learning. Thus, the prediction framework presented in this study can ensure reliable risk prediction of MI patients at an early stage of hospitalization which can be quite beneficial to clinicians in the decision-making process." @default.
- W4386989237 created "2023-09-24" @default.
- W4386989237 creator A5006761977 @default.
- W4386989237 creator A5037710871 @default.
- W4386989237 creator A5092928906 @default.
- W4386989237 date "2023-01-01" @default.
- W4386989237 modified "2023-10-16" @default.
- W4386989237 title "Predicting complications of myocardial infarction within several hours of hospitalization using data mining techniques" @default.
- W4386989237 cites W1647645866 @default.
- W4386989237 cites W1941659294 @default.
- W4386989237 cites W1996523702 @default.
- W4386989237 cites W2042681748 @default.
- W4386989237 cites W2076272581 @default.
- W4386989237 cites W2103614420 @default.
- W4386989237 cites W2118978333 @default.
- W4386989237 cites W2132791018 @default.
- W4386989237 cites W2148143831 @default.
- W4386989237 cites W2158698691 @default.
- W4386989237 cites W2338318698 @default.
- W4386989237 cites W2342408839 @default.
- W4386989237 cites W2484192585 @default.
- W4386989237 cites W2562319768 @default.
- W4386989237 cites W2664267452 @default.
- W4386989237 cites W2744139632 @default.
- W4386989237 cites W2800788706 @default.
- W4386989237 cites W2895763047 @default.
- W4386989237 cites W2966679659 @default.
- W4386989237 cites W2971644666 @default.
- W4386989237 cites W3024307699 @default.
- W4386989237 cites W3025215080 @default.
- W4386989237 cites W3093854333 @default.
- W4386989237 cites W3108118145 @default.
- W4386989237 cites W3111583227 @default.
- W4386989237 cites W3112371360 @default.
- W4386989237 cites W3115455310 @default.
- W4386989237 cites W3134665742 @default.
- W4386989237 cites W3135083987 @default.
- W4386989237 cites W3170931228 @default.
- W4386989237 cites W3172444956 @default.
- W4386989237 cites W3184022450 @default.
- W4386989237 cites W3210584845 @default.
- W4386989237 cites W3211607937 @default.
- W4386989237 cites W4206009515 @default.
- W4386989237 cites W4220925147 @default.
- W4386989237 cites W4226084339 @default.
- W4386989237 cites W4384526277 @default.
- W4386989237 cites W769353746 @default.
- W4386989237 doi "https://doi.org/10.1016/j.imu.2023.101361" @default.
- W4386989237 hasPublicationYear "2023" @default.
- W4386989237 type Work @default.
- W4386989237 citedByCount "0" @default.
- W4386989237 crossrefType "journal-article" @default.
- W4386989237 hasAuthorship W4386989237A5006761977 @default.
- W4386989237 hasAuthorship W4386989237A5037710871 @default.
- W4386989237 hasAuthorship W4386989237A5092928906 @default.
- W4386989237 hasBestOaLocation W43869892371 @default.
- W4386989237 hasConcept C106131492 @default.
- W4386989237 hasConcept C119857082 @default.
- W4386989237 hasConcept C124101348 @default.
- W4386989237 hasConcept C126322002 @default.
- W4386989237 hasConcept C140779682 @default.
- W4386989237 hasConcept C154945302 @default.
- W4386989237 hasConcept C177713679 @default.
- W4386989237 hasConcept C2777212361 @default.
- W4386989237 hasConcept C31972630 @default.
- W4386989237 hasConcept C41008148 @default.
- W4386989237 hasConcept C500558357 @default.
- W4386989237 hasConcept C71924100 @default.
- W4386989237 hasConcept C95623464 @default.
- W4386989237 hasConceptScore W4386989237C106131492 @default.
- W4386989237 hasConceptScore W4386989237C119857082 @default.
- W4386989237 hasConceptScore W4386989237C124101348 @default.
- W4386989237 hasConceptScore W4386989237C126322002 @default.
- W4386989237 hasConceptScore W4386989237C140779682 @default.
- W4386989237 hasConceptScore W4386989237C154945302 @default.
- W4386989237 hasConceptScore W4386989237C177713679 @default.
- W4386989237 hasConceptScore W4386989237C2777212361 @default.
- W4386989237 hasConceptScore W4386989237C31972630 @default.
- W4386989237 hasConceptScore W4386989237C41008148 @default.
- W4386989237 hasConceptScore W4386989237C500558357 @default.
- W4386989237 hasConceptScore W4386989237C71924100 @default.
- W4386989237 hasConceptScore W4386989237C95623464 @default.
- W4386989237 hasLocation W43869892371 @default.
- W4386989237 hasOpenAccess W4386989237 @default.
- W4386989237 hasPrimaryLocation W43869892371 @default.
- W4386989237 hasRelatedWork W2316107365 @default.
- W4386989237 hasRelatedWork W2367140913 @default.
- W4386989237 hasRelatedWork W2377483921 @default.
- W4386989237 hasRelatedWork W2384102316 @default.
- W4386989237 hasRelatedWork W2411183214 @default.
- W4386989237 hasRelatedWork W2443697580 @default.
- W4386989237 hasRelatedWork W2556319748 @default.
- W4386989237 hasRelatedWork W2595649087 @default.
- W4386989237 hasRelatedWork W2748952813 @default.
- W4386989237 hasRelatedWork W2899084033 @default.
- W4386989237 hasVolume "42" @default.
- W4386989237 isParatext "false" @default.
- W4386989237 isRetracted "false" @default.