Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386989355> ?p ?o ?g. }
- W4386989355 abstract "Human vocal folds are remarkable soft laryngeal structures that enable phonation due to their unique vibro-mechanical performances. These properties are tied to their specific fibrous architecture, especially in the upper layers, which comprise a gel-like composite called lamina propria. The lamina propria can withstand large and reversible deformations under various multiaxial loadings. Despite their importance, the relationships between the microstructure of vocal folds and their resulting macroscopic properties remain poorly understood. There is a need for versatile models that encompass their structural complexity while mimicking their mechanical features. In this study, we present a candidate model inspired by histological measurements of the upper layers of human vocal folds. Bi-photonic observations were used to quantify the distribution, orientation, width, and volume fraction of collagen and elastin fibers between histological layers. Using established biomaterials, polymer fiber-reinforced hydrogels were developed to replicate the fibrillar network and ground substance of native vocal fold tissue. To achieve this, jet-sprayed poly(ε-caprolactone) fibrillar mats were successfully impregnated with poly(L-lysine) dendrimers/polyethylene glycol hydrogels. The resulting composites exhibited versatile structural, physical and mechanical properties that could be customized through variations in the chemical formulation of their hydrogel matrix, the microstructural architecture of their fibrous networks (i.e., fiber diameter, orientation and volume fraction) and their assembly process. By mimicking the collagen network of the lamina propria with polymer fibers and the elastin/ground substance with the hydrogel composition, we successfully replicated the non-linear, anisotropic, and viscoelastic mechanical behavior of the vocal-fold upper layers, accounting for inter/intra-individual variations. The development of this mimetic model offers promising avenues for a better understanding of the complex mechanisms involved in voice production. STATEMENT OF SIGNIFICANCE: Human vocal folds are outstanding vibrating soft living tissues allowing phonation. Simple physical models that take into account the histological structure of the vocal fold and recapitulate its mechanical features are scarce. As a result, the relations between tissue components, organisation and vibro-mechanical performances still remain an open question. We describe here the development and the characterization of fiber-reinforced hydrogels inspired from the vocal-fold microstructure. These systems are able to reproduce the mechanics of vocal-fold tissues upon realistic cyclic and large strains under various multi-axial loadings, thus providing a mimetic model to further understand the impact of the fibrous network microstructure in phonation." @default.
- W4386989355 created "2023-09-24" @default.
- W4386989355 creator A5013275620 @default.
- W4386989355 creator A5014458776 @default.
- W4386989355 creator A5030841165 @default.
- W4386989355 creator A5031093709 @default.
- W4386989355 creator A5055243740 @default.
- W4386989355 creator A5087933105 @default.
- W4386989355 creator A5083884413 @default.
- W4386989355 date "2023-09-01" @default.
- W4386989355 modified "2023-10-15" @default.
- W4386989355 title "Versatile fiber-reinforced hydrogels to mimic the microstructure and mechanics of human vocal-fold upper layers" @default.
- W4386989355 cites W1149724364 @default.
- W4386989355 cites W1762236121 @default.
- W4386989355 cites W1875296650 @default.
- W4386989355 cites W1964029979 @default.
- W4386989355 cites W1969040470 @default.
- W4386989355 cites W1974272101 @default.
- W4386989355 cites W1975833234 @default.
- W4386989355 cites W1986462180 @default.
- W4386989355 cites W1987479659 @default.
- W4386989355 cites W1991099858 @default.
- W4386989355 cites W1991293579 @default.
- W4386989355 cites W2001716275 @default.
- W4386989355 cites W2006633963 @default.
- W4386989355 cites W2017081995 @default.
- W4386989355 cites W2018546922 @default.
- W4386989355 cites W2021794170 @default.
- W4386989355 cites W2025714935 @default.
- W4386989355 cites W2026356665 @default.
- W4386989355 cites W2030976910 @default.
- W4386989355 cites W2032189819 @default.
- W4386989355 cites W2034198968 @default.
- W4386989355 cites W2055037957 @default.
- W4386989355 cites W2058217371 @default.
- W4386989355 cites W2058699203 @default.
- W4386989355 cites W2061678377 @default.
- W4386989355 cites W2063660115 @default.
- W4386989355 cites W2066223803 @default.
- W4386989355 cites W2071984757 @default.
- W4386989355 cites W2072428487 @default.
- W4386989355 cites W2074570265 @default.
- W4386989355 cites W2078295557 @default.
- W4386989355 cites W2085806873 @default.
- W4386989355 cites W2086859574 @default.
- W4386989355 cites W2087331036 @default.
- W4386989355 cites W2090530815 @default.
- W4386989355 cites W2091482871 @default.
- W4386989355 cites W2096729155 @default.
- W4386989355 cites W2096745130 @default.
- W4386989355 cites W2107826536 @default.
- W4386989355 cites W2113260683 @default.
- W4386989355 cites W2126251586 @default.
- W4386989355 cites W2126313677 @default.
- W4386989355 cites W213050918 @default.
- W4386989355 cites W2132119859 @default.
- W4386989355 cites W2134190445 @default.
- W4386989355 cites W2164901788 @default.
- W4386989355 cites W2178709787 @default.
- W4386989355 cites W2314996256 @default.
- W4386989355 cites W2347113022 @default.
- W4386989355 cites W2397071937 @default.
- W4386989355 cites W2469106799 @default.
- W4386989355 cites W2469683796 @default.
- W4386989355 cites W2509730992 @default.
- W4386989355 cites W2551970192 @default.
- W4386989355 cites W2581108109 @default.
- W4386989355 cites W2783272954 @default.
- W4386989355 cites W2892196536 @default.
- W4386989355 cites W2947063413 @default.
- W4386989355 cites W2963886384 @default.
- W4386989355 cites W2980675513 @default.
- W4386989355 cites W3011491223 @default.
- W4386989355 cites W3016979940 @default.
- W4386989355 cites W3045002777 @default.
- W4386989355 cites W3048425584 @default.
- W4386989355 cites W3099142110 @default.
- W4386989355 cites W3123615894 @default.
- W4386989355 cites W3177487325 @default.
- W4386989355 cites W3189715851 @default.
- W4386989355 cites W3217575665 @default.
- W4386989355 cites W4221116165 @default.
- W4386989355 cites W4244523227 @default.
- W4386989355 cites W4307341050 @default.
- W4386989355 cites W4313419904 @default.
- W4386989355 cites W4315641036 @default.
- W4386989355 doi "https://doi.org/10.1016/j.actbio.2023.09.035" @default.
- W4386989355 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37748548" @default.
- W4386989355 hasPublicationYear "2023" @default.
- W4386989355 type Work @default.
- W4386989355 citedByCount "0" @default.
- W4386989355 crossrefType "journal-article" @default.
- W4386989355 hasAuthorship W4386989355A5013275620 @default.
- W4386989355 hasAuthorship W4386989355A5014458776 @default.
- W4386989355 hasAuthorship W4386989355A5030841165 @default.
- W4386989355 hasAuthorship W4386989355A5031093709 @default.
- W4386989355 hasAuthorship W4386989355A5055243740 @default.
- W4386989355 hasAuthorship W4386989355A5083884413 @default.
- W4386989355 hasAuthorship W4386989355A5087933105 @default.
- W4386989355 hasBestOaLocation W43869893551 @default.