Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386989462> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4386989462 endingPage "101057" @default.
- W4386989462 startingPage "101057" @default.
- W4386989462 abstract "Crop maps are crucial for agricultural monitoring and food management and can additionally support domain-specific applications, such as setting cold supply chain infrastructure in developing countries. Machine learning (ML) models, combined with freely-available satellite imagery, can be used to produce cost-effective and high spatial-resolution crop maps. However, accessing ground truth data for supervised learning is especially challenging in developing countries due to factors such as smallholding and fragmented geography, which often results in a lack of crop type maps or even reliable cropland maps. Our area of interest for this study lies in Himachal Pradesh, India, where we aim at producing an open-access binary cropland map at 10-m resolution for the Kullu, Shimla, and Mandi districts. To this end, we developed an ML pipeline that relies on Sentinel-2 satellite images time series. We investigated two pixel-based supervised classifiers, support vector machines (SVM) and random forest (RF), which are used to classify per-pixel time series for binary cropland mapping. The ground truth data used for training, validation and testing was manually annotated from a combination of field survey reference points and visual interpretation of very high resolution (VHR) imagery. We trained and validated the models via spatial cross-validation to account for local spatial autocorrelation and improve the generalization capability of the model. We tested the model on hold out test sets of each district, achieving an average accuracy for the RF (our best model) of 87%. We noticed NIR band at the early and late stage of the apple harvest season (main crop in the region) to be of critical importance for the model. Finally, we used this model to generate a cropland map for three districts of Himachal Pradesh, spanning 14,600 km2, which improves the resolution and quality of existing public maps, and made the code open-source." @default.
- W4386989462 created "2023-09-24" @default.
- W4386989462 creator A5000580857 @default.
- W4386989462 creator A5033209021 @default.
- W4386989462 creator A5037775056 @default.
- W4386989462 creator A5052208916 @default.
- W4386989462 date "2023-09-01" @default.
- W4386989462 modified "2023-10-18" @default.
- W4386989462 title "Using machine learning to generate an open-access cropland map from satellite images time series in the Indian Himalayan region" @default.
- W4386989462 cites W1969157285 @default.
- W4386989462 cites W1983603319 @default.
- W4386989462 cites W2024697317 @default.
- W4386989462 cites W2030327678 @default.
- W4386989462 cites W2055248879 @default.
- W4386989462 cites W2082081125 @default.
- W4386989462 cites W2109606373 @default.
- W4386989462 cites W2118037698 @default.
- W4386989462 cites W2118899651 @default.
- W4386989462 cites W2128579323 @default.
- W4386989462 cites W2178470810 @default.
- W4386989462 cites W2229287017 @default.
- W4386989462 cites W2273708466 @default.
- W4386989462 cites W2577871237 @default.
- W4386989462 cites W2729033468 @default.
- W4386989462 cites W2767953525 @default.
- W4386989462 cites W2803507394 @default.
- W4386989462 cites W2887987690 @default.
- W4386989462 cites W2897416154 @default.
- W4386989462 cites W2911964244 @default.
- W4386989462 cites W2953011380 @default.
- W4386989462 cites W2972629016 @default.
- W4386989462 cites W3009974559 @default.
- W4386989462 cites W3037496421 @default.
- W4386989462 cites W3190941789 @default.
- W4386989462 doi "https://doi.org/10.1016/j.rsase.2023.101057" @default.
- W4386989462 hasPublicationYear "2023" @default.
- W4386989462 type Work @default.
- W4386989462 citedByCount "0" @default.
- W4386989462 crossrefType "journal-article" @default.
- W4386989462 hasAuthorship W4386989462A5000580857 @default.
- W4386989462 hasAuthorship W4386989462A5033209021 @default.
- W4386989462 hasAuthorship W4386989462A5037775056 @default.
- W4386989462 hasAuthorship W4386989462A5052208916 @default.
- W4386989462 hasConcept C119857082 @default.
- W4386989462 hasConcept C12267149 @default.
- W4386989462 hasConcept C124101348 @default.
- W4386989462 hasConcept C127413603 @default.
- W4386989462 hasConcept C146849305 @default.
- W4386989462 hasConcept C146978453 @default.
- W4386989462 hasConcept C154945302 @default.
- W4386989462 hasConcept C159620131 @default.
- W4386989462 hasConcept C160633673 @default.
- W4386989462 hasConcept C169258074 @default.
- W4386989462 hasConcept C19269812 @default.
- W4386989462 hasConcept C205649164 @default.
- W4386989462 hasConcept C2778102629 @default.
- W4386989462 hasConcept C41008148 @default.
- W4386989462 hasConcept C62649853 @default.
- W4386989462 hasConceptScore W4386989462C119857082 @default.
- W4386989462 hasConceptScore W4386989462C12267149 @default.
- W4386989462 hasConceptScore W4386989462C124101348 @default.
- W4386989462 hasConceptScore W4386989462C127413603 @default.
- W4386989462 hasConceptScore W4386989462C146849305 @default.
- W4386989462 hasConceptScore W4386989462C146978453 @default.
- W4386989462 hasConceptScore W4386989462C154945302 @default.
- W4386989462 hasConceptScore W4386989462C159620131 @default.
- W4386989462 hasConceptScore W4386989462C160633673 @default.
- W4386989462 hasConceptScore W4386989462C169258074 @default.
- W4386989462 hasConceptScore W4386989462C19269812 @default.
- W4386989462 hasConceptScore W4386989462C205649164 @default.
- W4386989462 hasConceptScore W4386989462C2778102629 @default.
- W4386989462 hasConceptScore W4386989462C41008148 @default.
- W4386989462 hasConceptScore W4386989462C62649853 @default.
- W4386989462 hasLocation W43869894621 @default.
- W4386989462 hasOpenAccess W4386989462 @default.
- W4386989462 hasPrimaryLocation W43869894621 @default.
- W4386989462 hasRelatedWork W1996541855 @default.
- W4386989462 hasRelatedWork W2025617366 @default.
- W4386989462 hasRelatedWork W2985924212 @default.
- W4386989462 hasRelatedWork W3195168932 @default.
- W4386989462 hasRelatedWork W3195610867 @default.
- W4386989462 hasRelatedWork W4308191010 @default.
- W4386989462 hasRelatedWork W4321636153 @default.
- W4386989462 hasRelatedWork W4327511089 @default.
- W4386989462 hasRelatedWork W4377964522 @default.
- W4386989462 hasRelatedWork W4381414210 @default.
- W4386989462 isParatext "false" @default.
- W4386989462 isRetracted "false" @default.
- W4386989462 workType "article" @default.