Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386991608> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4386991608 abstract "Image desmoking is a significant aspect of endoscopic image processing, effectively mitigating visual field obstructions without the need for additional surgical interventions. However, current smoke removal techniques tend to apply comprehensive video enhancement to all frames, encompassing both smoke-free and smoke-affected images, which not only escalates computational costs but also introduces potential noise during the enhancement of smoke-free images. In response to this challenge, this paper introduces an approach for classifying images that contain surgical smoke within endoscopic scenes. This classification method provides crucial target frame information for enhancing surgical smoke removal, improving the scientific robustness, and enhancing the real-time processing capabilities of image-based smoke removal method. The proposed endoscopic smoke image classification algorithm based on the improved Poolformer model, augments the model's capacity for endoscopic image feature extraction. This enhancement is achieved by transforming the Token Mixer within the encoder into a multi-branch structure akin to ConvNeXt, a pure convolutional neural network. Moreover, the conversion to a single-path topology during the prediction phase elevates processing speed. Experiments use the endoscopic dataset sourced from the Hamlyn Centre Laparoscopic/Endoscopic Video Dataset, augmented by Blender software rendering. The dataset comprises 3,800 training images and 1,200 test images, distributed in a 4:1 ratio of smoke-free to smoke-containing images. The outcomes affirm the superior performance of this paper's approach across multiple parameters. Comparative assessments against existing models, such as mobilenet_v3, efficientnet_b7, and ViT-B/16, substantiate that the proposed method excels in accuracy, sensitivity, and inference speed. Notably, when contrasted with the Poolformer_s12 network, the proposed method achieves a 2.3% enhancement in accuracy, an 8.2% boost in sensitivity, while incurring a mere 6.4 frames per second reduction in processing speed, maintaining 87 frames per second. The results authenticate the improved performance of the refined Poolformer model in endoscopic smoke image classification tasks. This advancement presents a lightweight yet effective solution for the automatic detection of smoke-containing images in endoscopy. This approach strikes a balance between the accuracy and real-time processing requirements of endoscopic image analysis, offering valuable insights for targeted desmoking process." @default.
- W4386991608 created "2023-09-24" @default.
- W4386991608 creator A5001884711 @default.
- W4386991608 creator A5007430012 @default.
- W4386991608 creator A5022745041 @default.
- W4386991608 creator A5030691366 @default.
- W4386991608 creator A5037474559 @default.
- W4386991608 creator A5043972330 @default.
- W4386991608 creator A5049913829 @default.
- W4386991608 creator A5061500521 @default.
- W4386991608 creator A5071805632 @default.
- W4386991608 date "2023-09-21" @default.
- W4386991608 modified "2023-10-11" @default.
- W4386991608 title "Endoscopic image classification algorithm based on Poolformer" @default.
- W4386991608 cites W2112796928 @default.
- W4386991608 cites W2956121165 @default.
- W4386991608 cites W3036762004 @default.
- W4386991608 cites W3103770482 @default.
- W4386991608 cites W3135183190 @default.
- W4386991608 cites W3177054512 @default.
- W4386991608 cites W3179755079 @default.
- W4386991608 cites W4205231989 @default.
- W4386991608 cites W4206680628 @default.
- W4386991608 cites W4213140935 @default.
- W4386991608 cites W4220997012 @default.
- W4386991608 cites W4224997440 @default.
- W4386991608 cites W4226301153 @default.
- W4386991608 cites W4280520966 @default.
- W4386991608 cites W4283584363 @default.
- W4386991608 cites W4286436753 @default.
- W4386991608 cites W4288044245 @default.
- W4386991608 cites W4292399531 @default.
- W4386991608 cites W4294811304 @default.
- W4386991608 cites W4308624764 @default.
- W4386991608 cites W4317715935 @default.
- W4386991608 cites W4362657294 @default.
- W4386991608 cites W4379378756 @default.
- W4386991608 doi "https://doi.org/10.3389/fnins.2023.1273686" @default.
- W4386991608 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37811325" @default.
- W4386991608 hasPublicationYear "2023" @default.
- W4386991608 type Work @default.
- W4386991608 citedByCount "0" @default.
- W4386991608 crossrefType "journal-article" @default.
- W4386991608 hasAuthorship W4386991608A5001884711 @default.
- W4386991608 hasAuthorship W4386991608A5007430012 @default.
- W4386991608 hasAuthorship W4386991608A5022745041 @default.
- W4386991608 hasAuthorship W4386991608A5030691366 @default.
- W4386991608 hasAuthorship W4386991608A5037474559 @default.
- W4386991608 hasAuthorship W4386991608A5043972330 @default.
- W4386991608 hasAuthorship W4386991608A5049913829 @default.
- W4386991608 hasAuthorship W4386991608A5061500521 @default.
- W4386991608 hasAuthorship W4386991608A5071805632 @default.
- W4386991608 hasBestOaLocation W43869916081 @default.
- W4386991608 hasConcept C104317684 @default.
- W4386991608 hasConcept C11413529 @default.
- W4386991608 hasConcept C115961682 @default.
- W4386991608 hasConcept C121332964 @default.
- W4386991608 hasConcept C153294291 @default.
- W4386991608 hasConcept C154945302 @default.
- W4386991608 hasConcept C185592680 @default.
- W4386991608 hasConcept C31972630 @default.
- W4386991608 hasConcept C41008148 @default.
- W4386991608 hasConcept C55493867 @default.
- W4386991608 hasConcept C58874564 @default.
- W4386991608 hasConcept C63479239 @default.
- W4386991608 hasConcept C81363708 @default.
- W4386991608 hasConcept C9417928 @default.
- W4386991608 hasConceptScore W4386991608C104317684 @default.
- W4386991608 hasConceptScore W4386991608C11413529 @default.
- W4386991608 hasConceptScore W4386991608C115961682 @default.
- W4386991608 hasConceptScore W4386991608C121332964 @default.
- W4386991608 hasConceptScore W4386991608C153294291 @default.
- W4386991608 hasConceptScore W4386991608C154945302 @default.
- W4386991608 hasConceptScore W4386991608C185592680 @default.
- W4386991608 hasConceptScore W4386991608C31972630 @default.
- W4386991608 hasConceptScore W4386991608C41008148 @default.
- W4386991608 hasConceptScore W4386991608C55493867 @default.
- W4386991608 hasConceptScore W4386991608C58874564 @default.
- W4386991608 hasConceptScore W4386991608C63479239 @default.
- W4386991608 hasConceptScore W4386991608C81363708 @default.
- W4386991608 hasConceptScore W4386991608C9417928 @default.
- W4386991608 hasLocation W43869916081 @default.
- W4386991608 hasLocation W43869916082 @default.
- W4386991608 hasOpenAccess W4386991608 @default.
- W4386991608 hasPrimaryLocation W43869916081 @default.
- W4386991608 hasRelatedWork W2073410048 @default.
- W4386991608 hasRelatedWork W2328698228 @default.
- W4386991608 hasRelatedWork W2353278981 @default.
- W4386991608 hasRelatedWork W2380557683 @default.
- W4386991608 hasRelatedWork W2381442892 @default.
- W4386991608 hasRelatedWork W2382876515 @default.
- W4386991608 hasRelatedWork W2495534660 @default.
- W4386991608 hasRelatedWork W3048832137 @default.
- W4386991608 hasRelatedWork W4288693901 @default.
- W4386991608 hasRelatedWork W830499452 @default.
- W4386991608 hasVolume "17" @default.
- W4386991608 isParatext "false" @default.
- W4386991608 isRetracted "false" @default.
- W4386991608 workType "article" @default.