Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386995762> ?p ?o ?g. }
- W4386995762 endingPage "1120" @default.
- W4386995762 startingPage "1120" @default.
- W4386995762 abstract "Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide. Positron emission tomography/magnetic resonance (PET/MR) imaging is a promising technique that combines the advantages of PET and MR to provide both functional and structural information of the brain. Deep learning (DL) is a subfield of machine learning (ML) and artificial intelligence (AI) that focuses on developing algorithms and models inspired by the structure and function of the human brain’s neural networks. DL has been applied to various aspects of PET/MR imaging in AD, such as image segmentation, image reconstruction, diagnosis and prediction, and visualization of pathological features. In this review, we introduce the basic concepts and types of DL algorithms, such as feed forward neural networks, convolutional neural networks, recurrent neural networks, and autoencoders. We then summarize the current applications and challenges of DL in PET/MR imaging in AD, and discuss the future directions and opportunities for automated diagnosis, predictions of models, and personalized medicine. We conclude that DL has great potential to improve the quality and efficiency of PET/MR imaging in AD, and to provide new insights into the pathophysiology and treatment of this devastating disease." @default.
- W4386995762 created "2023-09-25" @default.
- W4386995762 creator A5008095732 @default.
- W4386995762 creator A5027702007 @default.
- W4386995762 creator A5033788876 @default.
- W4386995762 creator A5057838726 @default.
- W4386995762 creator A5060971312 @default.
- W4386995762 creator A5082924617 @default.
- W4386995762 creator A5091681525 @default.
- W4386995762 creator A5091903361 @default.
- W4386995762 date "2023-09-24" @default.
- W4386995762 modified "2023-09-30" @default.
- W4386995762 title "Application of Deep Learning for Prediction of Alzheimer’s Disease in PET/MR Imaging" @default.
- W4386995762 cites W1987273610 @default.
- W4386995762 cites W2076063813 @default.
- W4386995762 cites W2090824451 @default.
- W4386995762 cites W2100495367 @default.
- W4386995762 cites W2113708991 @default.
- W4386995762 cites W2136435696 @default.
- W4386995762 cites W2167720733 @default.
- W4386995762 cites W2167840686 @default.
- W4386995762 cites W2460653397 @default.
- W4386995762 cites W2888146348 @default.
- W4386995762 cites W2892218220 @default.
- W4386995762 cites W2912541111 @default.
- W4386995762 cites W2973208504 @default.
- W4386995762 cites W2991561240 @default.
- W4386995762 cites W3037182986 @default.
- W4386995762 cites W3042224613 @default.
- W4386995762 cites W3046211543 @default.
- W4386995762 cites W3046237015 @default.
- W4386995762 cites W3047985982 @default.
- W4386995762 cites W3079841961 @default.
- W4386995762 cites W3092235588 @default.
- W4386995762 cites W3106773885 @default.
- W4386995762 cites W3116132399 @default.
- W4386995762 cites W3124073201 @default.
- W4386995762 cites W3128656385 @default.
- W4386995762 cites W3138739022 @default.
- W4386995762 cites W3157083093 @default.
- W4386995762 cites W3164581645 @default.
- W4386995762 cites W3165102474 @default.
- W4386995762 cites W3167656397 @default.
- W4386995762 cites W3170129735 @default.
- W4386995762 cites W3170677518 @default.
- W4386995762 cites W3192083518 @default.
- W4386995762 cites W3197695618 @default.
- W4386995762 cites W3201684395 @default.
- W4386995762 cites W3207038896 @default.
- W4386995762 cites W3208620984 @default.
- W4386995762 cites W3210987080 @default.
- W4386995762 cites W3211351643 @default.
- W4386995762 cites W3211977731 @default.
- W4386995762 cites W3215399882 @default.
- W4386995762 cites W3217338325 @default.
- W4386995762 cites W4200406347 @default.
- W4386995762 cites W4205121737 @default.
- W4386995762 cites W4205432076 @default.
- W4386995762 cites W4206774749 @default.
- W4386995762 cites W4210900252 @default.
- W4386995762 cites W4211238543 @default.
- W4386995762 cites W4214723042 @default.
- W4386995762 cites W4220718392 @default.
- W4386995762 cites W4220863829 @default.
- W4386995762 cites W4220868306 @default.
- W4386995762 cites W4221041973 @default.
- W4386995762 cites W4221093948 @default.
- W4386995762 cites W4224284003 @default.
- W4386995762 cites W4225849752 @default.
- W4386995762 cites W4226176623 @default.
- W4386995762 cites W4229014737 @default.
- W4386995762 cites W4281646298 @default.
- W4386995762 cites W4281707480 @default.
- W4386995762 cites W4283700900 @default.
- W4386995762 cites W4284893453 @default.
- W4386995762 cites W4290989008 @default.
- W4386995762 cites W4292092999 @default.
- W4386995762 cites W4293065291 @default.
- W4386995762 cites W4294192129 @default.
- W4386995762 cites W4294266531 @default.
- W4386995762 cites W4295758099 @default.
- W4386995762 cites W4297549244 @default.
- W4386995762 cites W4301594781 @default.
- W4386995762 cites W4304893360 @default.
- W4386995762 cites W4308416326 @default.
- W4386995762 cites W4308774029 @default.
- W4386995762 cites W4308902196 @default.
- W4386995762 cites W4309681113 @default.
- W4386995762 cites W4310458617 @default.
- W4386995762 cites W4312212060 @default.
- W4386995762 cites W4312383049 @default.
- W4386995762 cites W4313391776 @default.
- W4386995762 cites W4313583468 @default.
- W4386995762 cites W4317778265 @default.
- W4386995762 cites W4318067163 @default.
- W4386995762 cites W4318671182 @default.
- W4386995762 cites W4318823721 @default.
- W4386995762 cites W4364322067 @default.