Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386996312> ?p ?o ?g. }
- W4386996312 endingPage "4676" @default.
- W4386996312 startingPage "4676" @default.
- W4386996312 abstract "Lithological classification is a pivotal aspect in the field of geology, and traditional field surveys are inefficient and challenging in certain areas. Remote sensing technology offers advantages such as high efficiency and wide coverage, providing a solution to the aforementioned issues. The aim of this study is to apply remote sensing technology for lithological classification and attempt to enhance the accuracy of classification. Taking a study area in Jixi, Heilongjiang Province, China, as an example, lithological classification is conducted using high-resolution satellite remote sensing data from GF-2 and texture data based on gray-level co-occurrence matrix (GLCM). By comparing the accuracy of lithological classification using different methods, the support vector machine (SVM) method with the highest overall accuracy is selected for further investigation. Subsequently, this study compares the effects of combining GF-2 data with different texture data, and the results indicate that combining textures can effectively improve the accuracy of lithological classification. In particular, the combination of GF-2 and the Dissimilarity index performs the best among single-texture combinations, with an overall accuracy improvement of 7.8630% (increasing from 74.6681% to 82.5311%) compared to using only GF-2 data. In the multi-texture combination dataset, the Mean index is crucial for enhancing classification accuracy. Selecting appropriate textures for combination can effectively improve classification accuracy, but it is important to note that excessive overlaying of textures may lead to a decrease in accuracy. Furthermore, this study employs principal component analysis (PCA) and independent component analysis (ICA) to process the GF-2 data and combines the resulting PCA and ICA datasets with different texture data for lithological classification. The results demonstrate that combining PCA and ICA with texture data further enhances classification accuracy. In conclusion, this study demonstrates the application of remote sensing technology in lithological classification, with a focus on exploring the application value of different combinations of multispectral data, texture data, PCA data, and ICA data. These findings provide valuable insights for future research in this field." @default.
- W4386996312 created "2023-09-25" @default.
- W4386996312 creator A5006556754 @default.
- W4386996312 creator A5034462511 @default.
- W4386996312 creator A5066608016 @default.
- W4386996312 creator A5086673970 @default.
- W4386996312 date "2023-09-24" @default.
- W4386996312 modified "2023-09-30" @default.
- W4386996312 title "GF-2 Data for Lithological Classification Using Texture Features and PCA/ICA Methods in Jixi, Heilongjiang, China" @default.
- W4386996312 cites W1967412740 @default.
- W4386996312 cites W1979061792 @default.
- W4386996312 cites W1991856864 @default.
- W4386996312 cites W2003691420 @default.
- W4386996312 cites W2022014145 @default.
- W4386996312 cites W2026233481 @default.
- W4386996312 cites W2027442956 @default.
- W4386996312 cites W2028542827 @default.
- W4386996312 cites W2033253499 @default.
- W4386996312 cites W2039085527 @default.
- W4386996312 cites W2044465660 @default.
- W4386996312 cites W2045875127 @default.
- W4386996312 cites W2055261909 @default.
- W4386996312 cites W2063907334 @default.
- W4386996312 cites W2068394350 @default.
- W4386996312 cites W2082140503 @default.
- W4386996312 cites W2095445096 @default.
- W4386996312 cites W2109205984 @default.
- W4386996312 cites W2109733148 @default.
- W4386996312 cites W2115451699 @default.
- W4386996312 cites W2117395697 @default.
- W4386996312 cites W2120587770 @default.
- W4386996312 cites W2125027853 @default.
- W4386996312 cites W2140103896 @default.
- W4386996312 cites W2149224850 @default.
- W4386996312 cites W2155799428 @default.
- W4386996312 cites W2302241271 @default.
- W4386996312 cites W2497703895 @default.
- W4386996312 cites W2530966209 @default.
- W4386996312 cites W2582144242 @default.
- W4386996312 cites W2725171488 @default.
- W4386996312 cites W2735212787 @default.
- W4386996312 cites W2740311783 @default.
- W4386996312 cites W2772578558 @default.
- W4386996312 cites W2789817813 @default.
- W4386996312 cites W2792378859 @default.
- W4386996312 cites W2805059354 @default.
- W4386996312 cites W2805627121 @default.
- W4386996312 cites W2810838438 @default.
- W4386996312 cites W2811483141 @default.
- W4386996312 cites W2883746869 @default.
- W4386996312 cites W2884036810 @default.
- W4386996312 cites W2900544280 @default.
- W4386996312 cites W2908511652 @default.
- W4386996312 cites W2921108718 @default.
- W4386996312 cites W2949528887 @default.
- W4386996312 cites W2981176263 @default.
- W4386996312 cites W2981927612 @default.
- W4386996312 cites W3000355009 @default.
- W4386996312 cites W3007961486 @default.
- W4386996312 cites W3039274199 @default.
- W4386996312 cites W3108131447 @default.
- W4386996312 cites W3123303244 @default.
- W4386996312 cites W3162658016 @default.
- W4386996312 cites W3163456103 @default.
- W4386996312 cites W3164882424 @default.
- W4386996312 cites W3208943037 @default.
- W4386996312 cites W3216055177 @default.
- W4386996312 cites W4213113494 @default.
- W4386996312 cites W4283009311 @default.
- W4386996312 cites W4308100956 @default.
- W4386996312 cites W4309460612 @default.
- W4386996312 cites W4379053905 @default.
- W4386996312 cites W4381546993 @default.
- W4386996312 cites W4386127704 @default.
- W4386996312 doi "https://doi.org/10.3390/rs15194676" @default.
- W4386996312 hasPublicationYear "2023" @default.
- W4386996312 type Work @default.
- W4386996312 citedByCount "0" @default.
- W4386996312 crossrefType "journal-article" @default.
- W4386996312 hasAuthorship W4386996312A5006556754 @default.
- W4386996312 hasAuthorship W4386996312A5034462511 @default.
- W4386996312 hasAuthorship W4386996312A5066608016 @default.
- W4386996312 hasAuthorship W4386996312A5086673970 @default.
- W4386996312 hasBestOaLocation W43869963121 @default.
- W4386996312 hasConcept C115961682 @default.
- W4386996312 hasConcept C12267149 @default.
- W4386996312 hasConcept C124101348 @default.
- W4386996312 hasConcept C127313418 @default.
- W4386996312 hasConcept C153180895 @default.
- W4386996312 hasConcept C154945302 @default.
- W4386996312 hasConcept C27438332 @default.
- W4386996312 hasConcept C2781195486 @default.
- W4386996312 hasConcept C41008148 @default.
- W4386996312 hasConcept C62649853 @default.
- W4386996312 hasConceptScore W4386996312C115961682 @default.
- W4386996312 hasConceptScore W4386996312C12267149 @default.
- W4386996312 hasConceptScore W4386996312C124101348 @default.
- W4386996312 hasConceptScore W4386996312C127313418 @default.