Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386996426> ?p ?o ?g. }
- W4386996426 endingPage "2463" @default.
- W4386996426 startingPage "2463" @default.
- W4386996426 abstract "This study focuses on assessing the accuracy of supervised machine learning regression algorithms (MLAs) in predicting actual crop evapotranspiration (ETc act) for a deficit irrigated vineyard of Vitis vinifera cv. Tempranillo, influenced by a typical Mediterranean climate. The standard approach of using the Food and Agriculture Organization (FAO) crop evapotranspiration under standard conditions (FAO-56 Kc-ET0) to estimate ETc act for irrigation purposes faces limitations in row-based, sparse, and drip irrigated crops with large, exposed soil areas, due to data requirements and potential shortcomings. One significant challenge is the accurate estimation of the basal crop coefficient (Kcb), which can be influenced by incorrect estimations of the effective transpiring leaf area and surface resistance. The research results demonstrate that the tested MLAs can accurately estimate ETc act for the vineyard with minimal errors. The Root-Mean-Square Error (RMSE) values were found to be in the range of 0.019 to 0.030 mm·h⁻¹. Additionally, the obtained MLAs reduced data requirements, which suggests their feasibility to be used to optimize sustainable irrigation management in vineyards and other row crops. The positive outcomes of the study highlight the potential advantages of employing MLAs for precise and efficient estimation of crop evapotranspiration, leading to improved water management practices in vineyards. This could promote the adoption of more sustainable and resource-efficient irrigation strategies, particularly in regions with Mediterranean climates." @default.
- W4386996426 created "2023-09-25" @default.
- W4386996426 creator A5022177830 @default.
- W4386996426 creator A5023196200 @default.
- W4386996426 creator A5034613779 @default.
- W4386996426 creator A5044430322 @default.
- W4386996426 date "2023-09-23" @default.
- W4386996426 modified "2023-10-16" @default.
- W4386996426 title "Predicting Crop Evapotranspiration under Non-Standard Conditions Using Machine Learning Algorithms, a Case Study for Vitis vinifera L. cv Tempranillo" @default.
- W4386996426 cites W1445573965 @default.
- W4386996426 cites W166728858 @default.
- W4386996426 cites W1969637737 @default.
- W4386996426 cites W1994233524 @default.
- W4386996426 cites W2010778044 @default.
- W4386996426 cites W2028145900 @default.
- W4386996426 cites W2029516269 @default.
- W4386996426 cites W2047445539 @default.
- W4386996426 cites W2049957303 @default.
- W4386996426 cites W2063422859 @default.
- W4386996426 cites W2074525761 @default.
- W4386996426 cites W2114908790 @default.
- W4386996426 cites W2119315083 @default.
- W4386996426 cites W2155096080 @default.
- W4386996426 cites W2172396214 @default.
- W4386996426 cites W2470283635 @default.
- W4386996426 cites W2505517402 @default.
- W4386996426 cites W2585302824 @default.
- W4386996426 cites W2626592491 @default.
- W4386996426 cites W2792263887 @default.
- W4386996426 cites W2887901282 @default.
- W4386996426 cites W2920819147 @default.
- W4386996426 cites W2980798220 @default.
- W4386996426 cites W2984652957 @default.
- W4386996426 cites W3010783886 @default.
- W4386996426 cites W3043392635 @default.
- W4386996426 cites W3129724583 @default.
- W4386996426 cites W3133942604 @default.
- W4386996426 cites W3135028703 @default.
- W4386996426 cites W4205372542 @default.
- W4386996426 cites W4237571513 @default.
- W4386996426 cites W4320474857 @default.
- W4386996426 cites W4362560190 @default.
- W4386996426 doi "https://doi.org/10.3390/agronomy13102463" @default.
- W4386996426 hasPublicationYear "2023" @default.
- W4386996426 type Work @default.
- W4386996426 citedByCount "0" @default.
- W4386996426 crossrefType "journal-article" @default.
- W4386996426 hasAuthorship W4386996426A5022177830 @default.
- W4386996426 hasAuthorship W4386996426A5023196200 @default.
- W4386996426 hasAuthorship W4386996426A5034613779 @default.
- W4386996426 hasAuthorship W4386996426A5044430322 @default.
- W4386996426 hasBestOaLocation W43869964261 @default.
- W4386996426 hasConcept C112077630 @default.
- W4386996426 hasConcept C127413603 @default.
- W4386996426 hasConcept C149207113 @default.
- W4386996426 hasConcept C166957645 @default.
- W4386996426 hasConcept C176783924 @default.
- W4386996426 hasConcept C18903297 @default.
- W4386996426 hasConcept C195092306 @default.
- W4386996426 hasConcept C205649164 @default.
- W4386996426 hasConcept C2777589951 @default.
- W4386996426 hasConcept C2780924976 @default.
- W4386996426 hasConcept C33923547 @default.
- W4386996426 hasConcept C39432304 @default.
- W4386996426 hasConcept C6557445 @default.
- W4386996426 hasConcept C72551326 @default.
- W4386996426 hasConcept C86803240 @default.
- W4386996426 hasConcept C88463610 @default.
- W4386996426 hasConcept C88862950 @default.
- W4386996426 hasConceptScore W4386996426C112077630 @default.
- W4386996426 hasConceptScore W4386996426C127413603 @default.
- W4386996426 hasConceptScore W4386996426C149207113 @default.
- W4386996426 hasConceptScore W4386996426C166957645 @default.
- W4386996426 hasConceptScore W4386996426C176783924 @default.
- W4386996426 hasConceptScore W4386996426C18903297 @default.
- W4386996426 hasConceptScore W4386996426C195092306 @default.
- W4386996426 hasConceptScore W4386996426C205649164 @default.
- W4386996426 hasConceptScore W4386996426C2777589951 @default.
- W4386996426 hasConceptScore W4386996426C2780924976 @default.
- W4386996426 hasConceptScore W4386996426C33923547 @default.
- W4386996426 hasConceptScore W4386996426C39432304 @default.
- W4386996426 hasConceptScore W4386996426C6557445 @default.
- W4386996426 hasConceptScore W4386996426C72551326 @default.
- W4386996426 hasConceptScore W4386996426C86803240 @default.
- W4386996426 hasConceptScore W4386996426C88463610 @default.
- W4386996426 hasConceptScore W4386996426C88862950 @default.
- W4386996426 hasIssue "10" @default.
- W4386996426 hasLocation W43869964261 @default.
- W4386996426 hasOpenAccess W4386996426 @default.
- W4386996426 hasPrimaryLocation W43869964261 @default.
- W4386996426 hasRelatedWork W1977065727 @default.
- W4386996426 hasRelatedWork W2011727028 @default.
- W4386996426 hasRelatedWork W2055588089 @default.
- W4386996426 hasRelatedWork W2060711457 @default.
- W4386996426 hasRelatedWork W2124178367 @default.
- W4386996426 hasRelatedWork W2147975300 @default.
- W4386996426 hasRelatedWork W2785636359 @default.
- W4386996426 hasRelatedWork W2958680511 @default.