Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386996710> ?p ?o ?g. }
- W4386996710 endingPage "8031" @default.
- W4386996710 startingPage "8031" @default.
- W4386996710 abstract "Synthetic aperture radar (SAR) sensor often produces a shadow in pairs with the target due to its slant-viewing imaging. As a result, shadows in SAR images can provide critical discriminative features for classifiers, such as target contours and relative positions. However, shadows possess unique properties that differ from targets, such as low intensity and sensitivity to depression angles, making it challenging to extract depth features from shadows directly using convolutional neural networks (CNN). In this paper, we propose a new SAR image-classification framework to utilize target and shadow information comprehensively. First, we design a SAR image segmentation method to extract target regions and shadow masks. Second, based on SAR projection geometry, we propose a data-augmentation method to compensate for the geometric distortion of shadows due to differences in depression angles. Finally, we introduce a feature-enhancement module (FEM) based on depthwise separable convolution (DSC) and convolutional block attention module (CBAM), enabling deep networks to fuse target and shadow features adaptively. The experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that when only using target and shadow information, the published deep-learning models can still achieve state-of-the-art performance after embedding the FEM." @default.
- W4386996710 created "2023-09-25" @default.
- W4386996710 creator A5012342645 @default.
- W4386996710 creator A5045644427 @default.
- W4386996710 creator A5050803462 @default.
- W4386996710 creator A5092930734 @default.
- W4386996710 date "2023-09-22" @default.
- W4386996710 modified "2023-10-15" @default.
- W4386996710 title "Integrating Target and Shadow Features for SAR Target Recognition" @default.
- W4386996710 cites W1973066300 @default.
- W4386996710 cites W2013203016 @default.
- W4386996710 cites W2079299474 @default.
- W4386996710 cites W2080639449 @default.
- W4386996710 cites W2090991102 @default.
- W4386996710 cites W2150486153 @default.
- W4386996710 cites W2159582914 @default.
- W4386996710 cites W2161274558 @default.
- W4386996710 cites W2262462480 @default.
- W4386996710 cites W2270280304 @default.
- W4386996710 cites W2281856034 @default.
- W4386996710 cites W2410591237 @default.
- W4386996710 cites W2521772843 @default.
- W4386996710 cites W2534070885 @default.
- W4386996710 cites W2534517308 @default.
- W4386996710 cites W2544789064 @default.
- W4386996710 cites W2545002463 @default.
- W4386996710 cites W2578577414 @default.
- W4386996710 cites W2588453093 @default.
- W4386996710 cites W2596473454 @default.
- W4386996710 cites W2615263668 @default.
- W4386996710 cites W2753007557 @default.
- W4386996710 cites W2767054946 @default.
- W4386996710 cites W2791987303 @default.
- W4386996710 cites W2808191180 @default.
- W4386996710 cites W2883279772 @default.
- W4386996710 cites W2884585870 @default.
- W4386996710 cites W2890732609 @default.
- W4386996710 cites W2948594896 @default.
- W4386996710 cites W2962858109 @default.
- W4386996710 cites W2963163009 @default.
- W4386996710 cites W2964191639 @default.
- W4386996710 cites W2971884209 @default.
- W4386996710 cites W2989280734 @default.
- W4386996710 cites W2991380894 @default.
- W4386996710 cites W3001606623 @default.
- W4386996710 cites W3022798719 @default.
- W4386996710 cites W3038113894 @default.
- W4386996710 cites W3173963551 @default.
- W4386996710 cites W4200447021 @default.
- W4386996710 cites W4200558958 @default.
- W4386996710 cites W4210243153 @default.
- W4386996710 cites W4226220893 @default.
- W4386996710 cites W4288777466 @default.
- W4386996710 cites W4312397462 @default.
- W4386996710 cites W5454555 @default.
- W4386996710 doi "https://doi.org/10.3390/s23198031" @default.
- W4386996710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37836861" @default.
- W4386996710 hasPublicationYear "2023" @default.
- W4386996710 type Work @default.
- W4386996710 citedByCount "0" @default.
- W4386996710 crossrefType "journal-article" @default.
- W4386996710 hasAuthorship W4386996710A5012342645 @default.
- W4386996710 hasAuthorship W4386996710A5045644427 @default.
- W4386996710 hasAuthorship W4386996710A5050803462 @default.
- W4386996710 hasAuthorship W4386996710A5092930734 @default.
- W4386996710 hasBestOaLocation W43869967101 @default.
- W4386996710 hasConcept C11413529 @default.
- W4386996710 hasConcept C117623542 @default.
- W4386996710 hasConcept C117797892 @default.
- W4386996710 hasConcept C119599485 @default.
- W4386996710 hasConcept C127413603 @default.
- W4386996710 hasConcept C138885662 @default.
- W4386996710 hasConcept C141353440 @default.
- W4386996710 hasConcept C153180895 @default.
- W4386996710 hasConcept C154945302 @default.
- W4386996710 hasConcept C15744967 @default.
- W4386996710 hasConcept C2776401178 @default.
- W4386996710 hasConcept C31972630 @default.
- W4386996710 hasConcept C41008148 @default.
- W4386996710 hasConcept C41895202 @default.
- W4386996710 hasConcept C542102704 @default.
- W4386996710 hasConcept C57493831 @default.
- W4386996710 hasConcept C81363708 @default.
- W4386996710 hasConcept C87360688 @default.
- W4386996710 hasConcept C89600930 @default.
- W4386996710 hasConcept C97931131 @default.
- W4386996710 hasConceptScore W4386996710C11413529 @default.
- W4386996710 hasConceptScore W4386996710C117623542 @default.
- W4386996710 hasConceptScore W4386996710C117797892 @default.
- W4386996710 hasConceptScore W4386996710C119599485 @default.
- W4386996710 hasConceptScore W4386996710C127413603 @default.
- W4386996710 hasConceptScore W4386996710C138885662 @default.
- W4386996710 hasConceptScore W4386996710C141353440 @default.
- W4386996710 hasConceptScore W4386996710C153180895 @default.
- W4386996710 hasConceptScore W4386996710C154945302 @default.
- W4386996710 hasConceptScore W4386996710C15744967 @default.
- W4386996710 hasConceptScore W4386996710C2776401178 @default.
- W4386996710 hasConceptScore W4386996710C31972630 @default.