Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386996819> ?p ?o ?g. }
- W4386996819 endingPage "4658" @default.
- W4386996819 startingPage "4658" @default.
- W4386996819 abstract "Chlorophyll is an important indicator for monitoring crop growth and is vital for agricultural management. Therefore, rapid and accurate estimation of chlorophyll content is important for decision support in precision agriculture to accurately monitor the SPAD (Soil and Plant Analyzer Development) values of winter wheat. This study used winter wheat to obtain canopy reflectance based on UAV hyperspectral data and to calculate different vegetation indices and red-edge parameters. The best-performing vegetation indices and red-edge parameters were selected by Pearson correlation analysis and multiple stepwise regression (MSR). SPAD values were estimated using a combination of vegetation indices, vegetation indices and red-edge parameters as model factors, two types of machine learning (ML), a support vector machine (SVM), and a backward propagation neural network (BPNN), and partial least squares regression (PLSR) for four growth stages of winter wheat, and validated using independent samples. The results show that for the same data source, the best vegetation indices or red-edge parameters for estimating SPAD values differed at different growth stages and that combining vegetation indices with red-edge parameters gave better estimates than using only vegetation indices as an input factor for estimating SPAD values. There is no significant difference between PLSR, SVM, and BPNN methods in estimating SPAD values, with better stability of the estimated models using machine learning methods. Different growth stages have a large impact on winter wheat SPAD values estimates, with the accuracy of the four growth stage models increasing in the following order: booting < heading < filling < flowering. This study shows that using a combination of vegetation indices and red-edge parameters can improve SPAD values estimates compared to using vegetation indices alone. In the future, the choice of appropriate factors and methods will need to be considered when constructing models to estimate crop SPAD values." @default.
- W4386996819 created "2023-09-25" @default.
- W4386996819 creator A5015195367 @default.
- W4386996819 creator A5027776757 @default.
- W4386996819 creator A5060220945 @default.
- W4386996819 creator A5081809406 @default.
- W4386996819 creator A5085117348 @default.
- W4386996819 creator A5085656556 @default.
- W4386996819 date "2023-09-22" @default.
- W4386996819 modified "2023-09-27" @default.
- W4386996819 title "UAV Hyperspectral Data Combined with Machine Learning for Winter Wheat Canopy SPAD Values Estimation" @default.
- W4386996819 cites W1498436455 @default.
- W4386996819 cites W1848144067 @default.
- W4386996819 cites W1964357740 @default.
- W4386996819 cites W1966675249 @default.
- W4386996819 cites W1974423938 @default.
- W4386996819 cites W1996379195 @default.
- W4386996819 cites W2000613913 @default.
- W4386996819 cites W2007939589 @default.
- W4386996819 cites W2011475440 @default.
- W4386996819 cites W2012086085 @default.
- W4386996819 cites W2012686349 @default.
- W4386996819 cites W2019349143 @default.
- W4386996819 cites W2021070812 @default.
- W4386996819 cites W2023519189 @default.
- W4386996819 cites W2023974265 @default.
- W4386996819 cites W2028724344 @default.
- W4386996819 cites W2041777957 @default.
- W4386996819 cites W2049556619 @default.
- W4386996819 cites W2056251274 @default.
- W4386996819 cites W2057084393 @default.
- W4386996819 cites W2059501000 @default.
- W4386996819 cites W2063907334 @default.
- W4386996819 cites W2066724429 @default.
- W4386996819 cites W2073503722 @default.
- W4386996819 cites W2077707413 @default.
- W4386996819 cites W2078996926 @default.
- W4386996819 cites W2089441588 @default.
- W4386996819 cites W2094447963 @default.
- W4386996819 cites W2097970470 @default.
- W4386996819 cites W2099704405 @default.
- W4386996819 cites W2103184761 @default.
- W4386996819 cites W2109006150 @default.
- W4386996819 cites W2111947859 @default.
- W4386996819 cites W2137608957 @default.
- W4386996819 cites W2139211176 @default.
- W4386996819 cites W2142624305 @default.
- W4386996819 cites W2289008458 @default.
- W4386996819 cites W2317582304 @default.
- W4386996819 cites W2514809712 @default.
- W4386996819 cites W2532314432 @default.
- W4386996819 cites W2563119511 @default.
- W4386996819 cites W2600798029 @default.
- W4386996819 cites W2800270701 @default.
- W4386996819 cites W2883847543 @default.
- W4386996819 cites W2902773593 @default.
- W4386996819 cites W2918294784 @default.
- W4386996819 cites W2935876239 @default.
- W4386996819 cites W2940512980 @default.
- W4386996819 cites W2944794516 @default.
- W4386996819 cites W2966381923 @default.
- W4386996819 cites W2980579175 @default.
- W4386996819 cites W2987472362 @default.
- W4386996819 cites W2989585671 @default.
- W4386996819 cites W2996041315 @default.
- W4386996819 cites W3007033431 @default.
- W4386996819 cites W3007651920 @default.
- W4386996819 cites W3007867595 @default.
- W4386996819 cites W3008109610 @default.
- W4386996819 cites W3080532439 @default.
- W4386996819 cites W3087149783 @default.
- W4386996819 cites W4206254883 @default.
- W4386996819 cites W4229371457 @default.
- W4386996819 cites W4292454738 @default.
- W4386996819 cites W4293221971 @default.
- W4386996819 cites W4296830313 @default.
- W4386996819 cites W4307167702 @default.
- W4386996819 cites W4309003554 @default.
- W4386996819 cites W4322504455 @default.
- W4386996819 cites W4323664314 @default.
- W4386996819 cites W4366549025 @default.
- W4386996819 cites W4367182726 @default.
- W4386996819 cites W4377021898 @default.
- W4386996819 cites W4380142962 @default.
- W4386996819 cites W4381793871 @default.
- W4386996819 cites W51106753 @default.
- W4386996819 doi "https://doi.org/10.3390/rs15194658" @default.
- W4386996819 hasPublicationYear "2023" @default.
- W4386996819 type Work @default.
- W4386996819 citedByCount "0" @default.
- W4386996819 crossrefType "journal-article" @default.
- W4386996819 hasAuthorship W4386996819A5015195367 @default.
- W4386996819 hasAuthorship W4386996819A5027776757 @default.
- W4386996819 hasAuthorship W4386996819A5060220945 @default.
- W4386996819 hasAuthorship W4386996819A5081809406 @default.
- W4386996819 hasAuthorship W4386996819A5085117348 @default.
- W4386996819 hasAuthorship W4386996819A5085656556 @default.
- W4386996819 hasBestOaLocation W43869968191 @default.