Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386996947> ?p ?o ?g. }
- W4386996947 endingPage "6767" @default.
- W4386996947 startingPage "6767" @default.
- W4386996947 abstract "This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread use of intra-day DERs and new market perspectives. The proposed model was tested with hourly wholesale electricity price data from Colombia, and the results were compared with different state-of-the-art forecasting baseline-tuned models such as Holt–Winters, XGBoost, Stacked LSTM, and Attention-LSTM. The findings show that the proposed model outperforms these baselines by effectively incorporating nonlinearity and explicitly modeling the underlying data’s behavior, all of this under four operating scenarios and different performance metrics. This allows it to handle high-, medium-, and low-variability scenarios while maintaining the accuracy and reliability of its predictions. The proposed framework shows potential for significantly improving the accuracy of electricity price forecasts, which can have significant benefits for making informed decisions in the energy sector." @default.
- W4386996947 created "2023-09-25" @default.
- W4386996947 creator A5000463608 @default.
- W4386996947 creator A5003160183 @default.
- W4386996947 creator A5045774588 @default.
- W4386996947 creator A5092930778 @default.
- W4386996947 date "2023-09-22" @default.
- W4386996947 modified "2023-10-18" @default.
- W4386996947 title "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture" @default.
- W4386996947 cites W1528000961 @default.
- W4386996947 cites W1980486587 @default.
- W4386996947 cites W1985594416 @default.
- W4386996947 cites W2003139437 @default.
- W4386996947 cites W2013872183 @default.
- W4386996947 cites W2037978179 @default.
- W4386996947 cites W2050660109 @default.
- W4386996947 cites W2115801488 @default.
- W4386996947 cites W2145456204 @default.
- W4386996947 cites W2295452988 @default.
- W4386996947 cites W2465887865 @default.
- W4386996947 cites W2570991997 @default.
- W4386996947 cites W2571217044 @default.
- W4386996947 cites W2734583519 @default.
- W4386996947 cites W2738455721 @default.
- W4386996947 cites W2750304600 @default.
- W4386996947 cites W2782905083 @default.
- W4386996947 cites W2809081811 @default.
- W4386996947 cites W2894409315 @default.
- W4386996947 cites W2907780353 @default.
- W4386996947 cites W2912610170 @default.
- W4386996947 cites W2921877430 @default.
- W4386996947 cites W2944900364 @default.
- W4386996947 cites W2963311488 @default.
- W4386996947 cites W2966110735 @default.
- W4386996947 cites W2972267365 @default.
- W4386996947 cites W2991447108 @default.
- W4386996947 cites W3003525731 @default.
- W4386996947 cites W3005566961 @default.
- W4386996947 cites W3017748668 @default.
- W4386996947 cites W3018805451 @default.
- W4386996947 cites W3033194942 @default.
- W4386996947 cites W3039602106 @default.
- W4386996947 cites W3043084551 @default.
- W4386996947 cites W3047269314 @default.
- W4386996947 cites W3047313329 @default.
- W4386996947 cites W3084610728 @default.
- W4386996947 cites W3095671294 @default.
- W4386996947 cites W3109641554 @default.
- W4386996947 cites W3112697087 @default.
- W4386996947 cites W3119092950 @default.
- W4386996947 cites W3121703777 @default.
- W4386996947 cites W3124349228 @default.
- W4386996947 cites W3185906304 @default.
- W4386996947 cites W3187347848 @default.
- W4386996947 cites W3195840469 @default.
- W4386996947 cites W3200723581 @default.
- W4386996947 cites W3209536764 @default.
- W4386996947 cites W4200129409 @default.
- W4386996947 cites W4200553326 @default.
- W4386996947 cites W4210573331 @default.
- W4386996947 cites W4210674130 @default.
- W4386996947 cites W4210758330 @default.
- W4386996947 cites W4213186888 @default.
- W4386996947 cites W4229443704 @default.
- W4386996947 cites W4283825468 @default.
- W4386996947 cites W4285227580 @default.
- W4386996947 cites W4292388358 @default.
- W4386996947 cites W4303699965 @default.
- W4386996947 cites W4306377113 @default.
- W4386996947 cites W4308217816 @default.
- W4386996947 cites W4312780945 @default.
- W4386996947 cites W4312885369 @default.
- W4386996947 cites W4313289168 @default.
- W4386996947 cites W4316136053 @default.
- W4386996947 cites W4353029206 @default.
- W4386996947 cites W4362694670 @default.
- W4386996947 cites W4362694830 @default.
- W4386996947 cites W4376645330 @default.
- W4386996947 cites W4386214441 @default.
- W4386996947 doi "https://doi.org/10.3390/en16196767" @default.
- W4386996947 hasPublicationYear "2023" @default.
- W4386996947 type Work @default.
- W4386996947 citedByCount "0" @default.
- W4386996947 crossrefType "journal-article" @default.
- W4386996947 hasAuthorship W4386996947A5000463608 @default.
- W4386996947 hasAuthorship W4386996947A5003160183 @default.
- W4386996947 hasAuthorship W4386996947A5045774588 @default.
- W4386996947 hasAuthorship W4386996947A5092930778 @default.
- W4386996947 hasBestOaLocation W43869969471 @default.
- W4386996947 hasConcept C111368507 @default.
- W4386996947 hasConcept C111919701 @default.
- W4386996947 hasConcept C118505674 @default.
- W4386996947 hasConcept C119599485 @default.
- W4386996947 hasConcept C119857082 @default.
- W4386996947 hasConcept C122282355 @default.
- W4386996947 hasConcept C12725497 @default.
- W4386996947 hasConcept C127313418 @default.
- W4386996947 hasConcept C127413603 @default.