Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386996983> ?p ?o ?g. }
- W4386996983 endingPage "4657" @default.
- W4386996983 startingPage "4657" @default.
- W4386996983 abstract "The images of the Sentinel-2 constellation can help the verification process of farmers’ declarations, providing, among other things, accurate spatial explicit maps of the agricultural land cover. The aim of the study is to design, develop, and evaluate two deep learning (DL) architectures tailored for agricultural land cover and crop type mapping. The focus is on a detailed class scheme encompassing fifteen distinct classes, utilizing Sentinel-2 imagery acquired on a monthly basis throughout the year. The study’s geographical scope covers a diverse rural area in North Greece, situated within southeast Europe. These architectures are a Temporal Convolutional Neural Network (CNN) and a combination of a Recurrent and a 2D Convolutional Neural Network (R-CNN), and their accuracy is compared to the well-established Random Forest (RF) machine learning algorithm. The comparative approach is not restricted to simply presenting the results given by classification metrics, but it also assesses the uncertainty of the classification results using an entropy measure and the spatial distribution of the classification errors. Furthermore, the issue of sampling strategy for the extraction of the training set is highlighted, targeting the efficient handling of both the imbalance of the dataset and the spectral variability of instances among classes. The two developed deep learning architectures performed equally well, presenting an overall accuracy of 90.13% (Temporal CNN) and 90.18% (R-CNN), higher than the 86.31% overall accuracy of the RF approach. Finally, the Temporal CNN method presented a lower entropy value (6.63%), compared both to R-CNN (7.76%) and RF (28.94%) methods, indicating that both DL approaches should be considered for developing operational EO processing workflows." @default.
- W4386996983 created "2023-09-25" @default.
- W4386996983 creator A5002395088 @default.
- W4386996983 creator A5011288209 @default.
- W4386996983 creator A5040364094 @default.
- W4386996983 creator A5041088872 @default.
- W4386996983 creator A5049513823 @default.
- W4386996983 creator A5054911452 @default.
- W4386996983 date "2023-09-22" @default.
- W4386996983 modified "2023-09-30" @default.
- W4386996983 title "Agricultural Land Cover Mapping through Two Deep Learning Models in the Framework of EU’s CAP Activities Using Sentinel-2 Multitemporal Imagery" @default.
- W4386996983 cites W2068094410 @default.
- W4386996983 cites W2081757228 @default.
- W4386996983 cites W2125283600 @default.
- W4386996983 cites W2132424470 @default.
- W4386996983 cites W2153820558 @default.
- W4386996983 cites W2155632266 @default.
- W4386996983 cites W2155810509 @default.
- W4386996983 cites W2169627224 @default.
- W4386996983 cites W2273708466 @default.
- W4386996983 cites W2415835353 @default.
- W4386996983 cites W2531168480 @default.
- W4386996983 cites W2734780326 @default.
- W4386996983 cites W2737391801 @default.
- W4386996983 cites W2766727660 @default.
- W4386996983 cites W2782522152 @default.
- W4386996983 cites W2791592925 @default.
- W4386996983 cites W2792827505 @default.
- W4386996983 cites W2897438944 @default.
- W4386996983 cites W2900217217 @default.
- W4386996983 cites W2903282641 @default.
- W4386996983 cites W2910306855 @default.
- W4386996983 cites W2919115771 @default.
- W4386996983 cites W2940726923 @default.
- W4386996983 cites W2963131120 @default.
- W4386996983 cites W2972965474 @default.
- W4386996983 cites W2983376237 @default.
- W4386996983 cites W3013040422 @default.
- W4386996983 cites W3043490760 @default.
- W4386996983 cites W3082766779 @default.
- W4386996983 cites W3100996084 @default.
- W4386996983 cites W3118525051 @default.
- W4386996983 cites W3120899779 @default.
- W4386996983 cites W3122028341 @default.
- W4386996983 cites W3128592650 @default.
- W4386996983 cites W3131937156 @default.
- W4386996983 cites W3137283764 @default.
- W4386996983 cites W3147179755 @default.
- W4386996983 cites W3183470088 @default.
- W4386996983 cites W3215242937 @default.
- W4386996983 cites W4206966223 @default.
- W4386996983 cites W4223500599 @default.
- W4386996983 cites W4223923442 @default.
- W4386996983 cites W4280648138 @default.
- W4386996983 cites W4282575352 @default.
- W4386996983 cites W4283022469 @default.
- W4386996983 cites W4283324343 @default.
- W4386996983 cites W4289205656 @default.
- W4386996983 cites W4292387412 @default.
- W4386996983 cites W4296351107 @default.
- W4386996983 cites W4300852401 @default.
- W4386996983 cites W4307630849 @default.
- W4386996983 cites W4311080873 @default.
- W4386996983 cites W4311398676 @default.
- W4386996983 cites W4312966144 @default.
- W4386996983 cites W4313529997 @default.
- W4386996983 cites W4313568881 @default.
- W4386996983 cites W4315702421 @default.
- W4386996983 cites W4362579084 @default.
- W4386996983 cites W4362585219 @default.
- W4386996983 cites W4376651839 @default.
- W4386996983 cites W4377229921 @default.
- W4386996983 cites W4379259060 @default.
- W4386996983 cites W4382797480 @default.
- W4386996983 cites W4383558056 @default.
- W4386996983 cites W4383877006 @default.
- W4386996983 cites W4384823781 @default.
- W4386996983 doi "https://doi.org/10.3390/rs15194657" @default.
- W4386996983 hasPublicationYear "2023" @default.
- W4386996983 type Work @default.
- W4386996983 citedByCount "0" @default.
- W4386996983 crossrefType "journal-article" @default.
- W4386996983 hasAuthorship W4386996983A5002395088 @default.
- W4386996983 hasAuthorship W4386996983A5011288209 @default.
- W4386996983 hasAuthorship W4386996983A5040364094 @default.
- W4386996983 hasAuthorship W4386996983A5041088872 @default.
- W4386996983 hasAuthorship W4386996983A5049513823 @default.
- W4386996983 hasAuthorship W4386996983A5054911452 @default.
- W4386996983 hasBestOaLocation W43869969831 @default.
- W4386996983 hasConcept C106301342 @default.
- W4386996983 hasConcept C108583219 @default.
- W4386996983 hasConcept C119857082 @default.
- W4386996983 hasConcept C121332964 @default.
- W4386996983 hasConcept C127413603 @default.
- W4386996983 hasConcept C147176958 @default.
- W4386996983 hasConcept C153180895 @default.
- W4386996983 hasConcept C154945302 @default.
- W4386996983 hasConcept C169258074 @default.