Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386997170> ?p ?o ?g. }
- W4386997170 endingPage "100952" @default.
- W4386997170 startingPage "100952" @default.
- W4386997170 abstract "The increasing trend toward using the Internet of Things (IoT) increased the number of intrusions and intruders annually. Hence, the integration, confidentiality, and access to digital resources would be threatened continually. The significance of security implementation in digital platforms and the need to design defensive systems to discover different intrusions made the researchers study updated and effective methods, such as Botnet Detection for IoT systems. Many problem space features and network behavior unpredictability made the Intrusion Detection System (IDS) the main problem in maintaining computer networks' security. Furthermore, many insignificant features have turned the feature selection (FS) problem into a vast IDS aspect. This paper introduces a novel binary multi-objective dynamic Harris Hawks Optimization (HHO) enhanced with mutation operator (MODHHO) and applies it to Botnet Detection in IoT. Afterward, the Feature Selection (FS) is undertaken, and the K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Decision Tree (DT) classifiers are used to estimate the potential of the selected features in the precise detection of intrusions. The simulation results illustrated that the MODHHO algorithm performs well in Botnet Detection in IoT and is preferred to other approaches in its performance metrics. Besides, the computational complexity analysis results suggest that the MODHHO algorithm's overhead is more optimal than similar approaches. The MODHHO algorithm has performed better in comparison with other compared algorithms in all 5 data sets. In contrast with the machine learning methods of the proposed model in all five data sets, it has had a better error rate according to the AUC, G-mean, and TPR criteria. And according to the comparison made with filter-based methods, it has performed almost better in three datasets." @default.
- W4386997170 created "2023-09-25" @default.
- W4386997170 creator A5007972952 @default.
- W4386997170 creator A5009120208 @default.
- W4386997170 creator A5028377757 @default.
- W4386997170 creator A5051636626 @default.
- W4386997170 date "2023-12-01" @default.
- W4386997170 modified "2023-10-16" @default.
- W4386997170 title "A Multi-Objective Mutation-based Dynamic Harris Hawks Optimization for Botnet Detection in IoT" @default.
- W4386997170 cites W1989352541 @default.
- W4386997170 cites W2003282593 @default.
- W4386997170 cites W2052865225 @default.
- W4386997170 cites W2118555129 @default.
- W4386997170 cites W2142889610 @default.
- W4386997170 cites W2143381319 @default.
- W4386997170 cites W2310612427 @default.
- W4386997170 cites W2553769569 @default.
- W4386997170 cites W2570235502 @default.
- W4386997170 cites W2607026858 @default.
- W4386997170 cites W2733765803 @default.
- W4386997170 cites W2768696376 @default.
- W4386997170 cites W2789525712 @default.
- W4386997170 cites W2795304747 @default.
- W4386997170 cites W2884377042 @default.
- W4386997170 cites W2900164475 @default.
- W4386997170 cites W2902161191 @default.
- W4386997170 cites W2914250519 @default.
- W4386997170 cites W2919979744 @default.
- W4386997170 cites W2950731991 @default.
- W4386997170 cites W2953927818 @default.
- W4386997170 cites W2956839102 @default.
- W4386997170 cites W2959627510 @default.
- W4386997170 cites W2963073179 @default.
- W4386997170 cites W2979873927 @default.
- W4386997170 cites W2994733461 @default.
- W4386997170 cites W3002711162 @default.
- W4386997170 cites W3003591012 @default.
- W4386997170 cites W3014435621 @default.
- W4386997170 cites W3019959491 @default.
- W4386997170 cites W3020118020 @default.
- W4386997170 cites W3124724827 @default.
- W4386997170 cites W3126377022 @default.
- W4386997170 cites W3207394156 @default.
- W4386997170 cites W4220747501 @default.
- W4386997170 cites W4220844189 @default.
- W4386997170 cites W4289929824 @default.
- W4386997170 cites W4289941892 @default.
- W4386997170 cites W4293481488 @default.
- W4386997170 cites W4296347973 @default.
- W4386997170 cites W4313458720 @default.
- W4386997170 cites W4321351379 @default.
- W4386997170 cites W4365142484 @default.
- W4386997170 doi "https://doi.org/10.1016/j.iot.2023.100952" @default.
- W4386997170 hasPublicationYear "2023" @default.
- W4386997170 type Work @default.
- W4386997170 citedByCount "0" @default.
- W4386997170 crossrefType "journal-article" @default.
- W4386997170 hasAuthorship W4386997170A5007972952 @default.
- W4386997170 hasAuthorship W4386997170A5009120208 @default.
- W4386997170 hasAuthorship W4386997170A5028377757 @default.
- W4386997170 hasAuthorship W4386997170A5051636626 @default.
- W4386997170 hasConcept C110875604 @default.
- W4386997170 hasConcept C111919701 @default.
- W4386997170 hasConcept C119857082 @default.
- W4386997170 hasConcept C12267149 @default.
- W4386997170 hasConcept C124101348 @default.
- W4386997170 hasConcept C136764020 @default.
- W4386997170 hasConcept C138885662 @default.
- W4386997170 hasConcept C148483581 @default.
- W4386997170 hasConcept C154945302 @default.
- W4386997170 hasConcept C22735295 @default.
- W4386997170 hasConcept C2776401178 @default.
- W4386997170 hasConcept C2779960059 @default.
- W4386997170 hasConcept C35525427 @default.
- W4386997170 hasConcept C37616216 @default.
- W4386997170 hasConcept C41008148 @default.
- W4386997170 hasConcept C41895202 @default.
- W4386997170 hasConcept C50644808 @default.
- W4386997170 hasConcept C60908668 @default.
- W4386997170 hasConceptScore W4386997170C110875604 @default.
- W4386997170 hasConceptScore W4386997170C111919701 @default.
- W4386997170 hasConceptScore W4386997170C119857082 @default.
- W4386997170 hasConceptScore W4386997170C12267149 @default.
- W4386997170 hasConceptScore W4386997170C124101348 @default.
- W4386997170 hasConceptScore W4386997170C136764020 @default.
- W4386997170 hasConceptScore W4386997170C138885662 @default.
- W4386997170 hasConceptScore W4386997170C148483581 @default.
- W4386997170 hasConceptScore W4386997170C154945302 @default.
- W4386997170 hasConceptScore W4386997170C22735295 @default.
- W4386997170 hasConceptScore W4386997170C2776401178 @default.
- W4386997170 hasConceptScore W4386997170C2779960059 @default.
- W4386997170 hasConceptScore W4386997170C35525427 @default.
- W4386997170 hasConceptScore W4386997170C37616216 @default.
- W4386997170 hasConceptScore W4386997170C41008148 @default.
- W4386997170 hasConceptScore W4386997170C41895202 @default.
- W4386997170 hasConceptScore W4386997170C50644808 @default.
- W4386997170 hasConceptScore W4386997170C60908668 @default.
- W4386997170 hasLocation W43869971701 @default.