Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387002004> ?p ?o ?g. }
- W4387002004 abstract "Glaucoma diagnosis at an early stage is vital for the timely initiation of its treatment for and preventing possible vision loss. For glaucoma diagnosis, an accurate estimation of the cup-to-disk ratio (CDR) is required. The current automatic CDR computation techniques attribute lower accuracy and higher complexity, which are important considerations for diagnostics system design to be used for such critical diagnoses. The current methods involve a deeper deep learning model, comprising a large number of parameters, which results in higher system complexity and training/testing time. To address these challenges, this paper proposes a Residual Connection (non-identity)-based Deep Neural Network (RC-DNN), which is based on non-identity residual connectivity for joint optic disk (OD) and optic cup (OC) detection. The proposed model is emboldened by efficient residual connectivity, which is beneficial in several ways. First, the model is efficient and can perform simultaneous segmentation of the OC and OD. Second, the efficient residual information flow permeates the vanishing gradient problem which results in faster converges of the model. Third, feature inspiration empowers the network to perform the segmentation with only a few network layers. We performed a comprehensive performance evaluation of the developed model based on its training in RIM-ONE and DRISHTIGS databases. For OC segmentation, for the images (test set) from {DRISHTI-GS and RIM-ONE} datasets, our proposed model achieves the dice coefficient, Jaccard coefficient, sensitivity, specificity, and balanced accuracy of {92.62, 86.52}, {86.87, 77.54}, {94.21, 95.36}, {99.83, 99.639}, and {94.2, 98.9}, respectively. These experimental results indicate that the developed model provides significant performance enhancement for joint OC and OD segmentation. Additionally, the reduced computational complexity based on reduced model parameters and higher segmentation accuracy provides the additional features of efficacy, robustness, and reliability of the developed model. These attributes of the developed model advocate for its deployment of population-scale glaucoma screening programs." @default.
- W4387002004 created "2023-09-26" @default.
- W4387002004 creator A5014562556 @default.
- W4387002004 date "2023-07-01" @default.
- W4387002004 modified "2023-10-17" @default.
- W4387002004 title "A residual connection enabled deep neural network model for optic disk and optic cup segmentation for glaucoma diagnosis" @default.
- W4387002004 cites W1901129140 @default.
- W4387002004 cites W1979167658 @default.
- W4387002004 cites W2034786340 @default.
- W4387002004 cites W2057266151 @default.
- W4387002004 cites W2067239626 @default.
- W4387002004 cites W2081178133 @default.
- W4387002004 cites W2104324599 @default.
- W4387002004 cites W2194775991 @default.
- W4387002004 cites W2497083461 @default.
- W4387002004 cites W2513367050 @default.
- W4387002004 cites W2531866780 @default.
- W4387002004 cites W2541760854 @default.
- W4387002004 cites W2607394097 @default.
- W4387002004 cites W2793119512 @default.
- W4387002004 cites W2795078241 @default.
- W4387002004 cites W2810644003 @default.
- W4387002004 cites W2884120031 @default.
- W4387002004 cites W2890602145 @default.
- W4387002004 cites W2895693960 @default.
- W4387002004 cites W2915496375 @default.
- W4387002004 cites W2935464137 @default.
- W4387002004 cites W2946133851 @default.
- W4387002004 cites W2950744209 @default.
- W4387002004 cites W2963730393 @default.
- W4387002004 cites W2963881378 @default.
- W4387002004 cites W2973003726 @default.
- W4387002004 cites W2980199471 @default.
- W4387002004 cites W2990655933 @default.
- W4387002004 cites W3033845015 @default.
- W4387002004 cites W3043116777 @default.
- W4387002004 cites W3101386228 @default.
- W4387002004 cites W3101507774 @default.
- W4387002004 cites W3103010481 @default.
- W4387002004 cites W3152497941 @default.
- W4387002004 cites W4293064641 @default.
- W4387002004 cites W4297241273 @default.
- W4387002004 doi "https://doi.org/10.1177/00368504231201329" @default.
- W4387002004 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37743660" @default.
- W4387002004 hasPublicationYear "2023" @default.
- W4387002004 type Work @default.
- W4387002004 citedByCount "0" @default.
- W4387002004 crossrefType "journal-article" @default.
- W4387002004 hasAuthorship W4387002004A5014562556 @default.
- W4387002004 hasBestOaLocation W43870020041 @default.
- W4387002004 hasConcept C104317684 @default.
- W4387002004 hasConcept C108583219 @default.
- W4387002004 hasConcept C11413529 @default.
- W4387002004 hasConcept C114696181 @default.
- W4387002004 hasConcept C118487528 @default.
- W4387002004 hasConcept C119857082 @default.
- W4387002004 hasConcept C124504099 @default.
- W4387002004 hasConcept C127413603 @default.
- W4387002004 hasConcept C127716648 @default.
- W4387002004 hasConcept C138885662 @default.
- W4387002004 hasConcept C153180895 @default.
- W4387002004 hasConcept C154945302 @default.
- W4387002004 hasConcept C155512373 @default.
- W4387002004 hasConcept C163892561 @default.
- W4387002004 hasConcept C169903167 @default.
- W4387002004 hasConcept C185592680 @default.
- W4387002004 hasConcept C203519979 @default.
- W4387002004 hasConcept C21200559 @default.
- W4387002004 hasConcept C24326235 @default.
- W4387002004 hasConcept C2776401178 @default.
- W4387002004 hasConcept C2778527774 @default.
- W4387002004 hasConcept C2983497740 @default.
- W4387002004 hasConcept C41008148 @default.
- W4387002004 hasConcept C41895202 @default.
- W4387002004 hasConcept C50644808 @default.
- W4387002004 hasConcept C55493867 @default.
- W4387002004 hasConcept C71924100 @default.
- W4387002004 hasConcept C89600930 @default.
- W4387002004 hasConcept C96021297 @default.
- W4387002004 hasConceptScore W4387002004C104317684 @default.
- W4387002004 hasConceptScore W4387002004C108583219 @default.
- W4387002004 hasConceptScore W4387002004C11413529 @default.
- W4387002004 hasConceptScore W4387002004C114696181 @default.
- W4387002004 hasConceptScore W4387002004C118487528 @default.
- W4387002004 hasConceptScore W4387002004C119857082 @default.
- W4387002004 hasConceptScore W4387002004C124504099 @default.
- W4387002004 hasConceptScore W4387002004C127413603 @default.
- W4387002004 hasConceptScore W4387002004C127716648 @default.
- W4387002004 hasConceptScore W4387002004C138885662 @default.
- W4387002004 hasConceptScore W4387002004C153180895 @default.
- W4387002004 hasConceptScore W4387002004C154945302 @default.
- W4387002004 hasConceptScore W4387002004C155512373 @default.
- W4387002004 hasConceptScore W4387002004C163892561 @default.
- W4387002004 hasConceptScore W4387002004C169903167 @default.
- W4387002004 hasConceptScore W4387002004C185592680 @default.
- W4387002004 hasConceptScore W4387002004C203519979 @default.
- W4387002004 hasConceptScore W4387002004C21200559 @default.
- W4387002004 hasConceptScore W4387002004C24326235 @default.
- W4387002004 hasConceptScore W4387002004C2776401178 @default.
- W4387002004 hasConceptScore W4387002004C2778527774 @default.