Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387006048> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4387006048 abstract "Digital transformation in buildings accumulates massive operational data, which calls for smart solutions to utilize these data to improve energy performance. This study has proposed a solution, namely Deep Energy Twin, for integrating deep learning and digital twins to better understand building energy use and identify the potential for improving energy efficiency. Ontology was adopted to create parametric digital twins to provide consistency of data format across different systems in a building. Based on created digital twins and collected data, deep learning methods were used for performing data analytics to identify patterns and provide insights for energy optimization. As a demonstration, a case study was conducted in a public historic building in Norrköping, Sweden, to compare the performance of state-of-the-art deep learning architectures in building energy forecasting." @default.
- W4387006048 created "2023-09-26" @default.
- W4387006048 creator A5039822206 @default.
- W4387006048 creator A5044063959 @default.
- W4387006048 creator A5064882365 @default.
- W4387006048 creator A5089460616 @default.
- W4387006048 date "2023-07-26" @default.
- W4387006048 modified "2023-09-26" @default.
- W4387006048 title "Leveraging Deep Learning and Digital Twins to Improve Energy Performance of Buildings" @default.
- W4387006048 cites W2064675550 @default.
- W4387006048 cites W2133109597 @default.
- W4387006048 cites W2547861573 @default.
- W4387006048 cites W2754252319 @default.
- W4387006048 cites W2788308593 @default.
- W4387006048 cites W2899639285 @default.
- W4387006048 cites W2903925216 @default.
- W4387006048 cites W2980114529 @default.
- W4387006048 cites W2981278439 @default.
- W4387006048 cites W3013120860 @default.
- W4387006048 cites W3028926798 @default.
- W4387006048 cites W3043084043 @default.
- W4387006048 cites W3080311721 @default.
- W4387006048 cites W3104416121 @default.
- W4387006048 cites W3125531171 @default.
- W4387006048 cites W3171884590 @default.
- W4387006048 cites W3191622265 @default.
- W4387006048 cites W3208067891 @default.
- W4387006048 cites W3208252121 @default.
- W4387006048 cites W4226020959 @default.
- W4387006048 cites W4283330583 @default.
- W4387006048 cites W4286311701 @default.
- W4387006048 cites W4293370891 @default.
- W4387006048 doi "https://doi.org/10.1109/ieses53571.2023.10253721" @default.
- W4387006048 hasPublicationYear "2023" @default.
- W4387006048 type Work @default.
- W4387006048 citedByCount "0" @default.
- W4387006048 crossrefType "proceedings-article" @default.
- W4387006048 hasAuthorship W4387006048A5039822206 @default.
- W4387006048 hasAuthorship W4387006048A5044063959 @default.
- W4387006048 hasAuthorship W4387006048A5064882365 @default.
- W4387006048 hasAuthorship W4387006048A5089460616 @default.
- W4387006048 hasConcept C105795698 @default.
- W4387006048 hasConcept C108583219 @default.
- W4387006048 hasConcept C111472728 @default.
- W4387006048 hasConcept C119599485 @default.
- W4387006048 hasConcept C119857082 @default.
- W4387006048 hasConcept C127413603 @default.
- W4387006048 hasConcept C138885662 @default.
- W4387006048 hasConcept C154945302 @default.
- W4387006048 hasConcept C186370098 @default.
- W4387006048 hasConcept C2522767166 @default.
- W4387006048 hasConcept C25810664 @default.
- W4387006048 hasConcept C2742236 @default.
- W4387006048 hasConcept C2776436953 @default.
- W4387006048 hasConcept C33923547 @default.
- W4387006048 hasConcept C41008148 @default.
- W4387006048 hasConcept C67186912 @default.
- W4387006048 hasConcept C77088390 @default.
- W4387006048 hasConceptScore W4387006048C105795698 @default.
- W4387006048 hasConceptScore W4387006048C108583219 @default.
- W4387006048 hasConceptScore W4387006048C111472728 @default.
- W4387006048 hasConceptScore W4387006048C119599485 @default.
- W4387006048 hasConceptScore W4387006048C119857082 @default.
- W4387006048 hasConceptScore W4387006048C127413603 @default.
- W4387006048 hasConceptScore W4387006048C138885662 @default.
- W4387006048 hasConceptScore W4387006048C154945302 @default.
- W4387006048 hasConceptScore W4387006048C186370098 @default.
- W4387006048 hasConceptScore W4387006048C2522767166 @default.
- W4387006048 hasConceptScore W4387006048C25810664 @default.
- W4387006048 hasConceptScore W4387006048C2742236 @default.
- W4387006048 hasConceptScore W4387006048C2776436953 @default.
- W4387006048 hasConceptScore W4387006048C33923547 @default.
- W4387006048 hasConceptScore W4387006048C41008148 @default.
- W4387006048 hasConceptScore W4387006048C67186912 @default.
- W4387006048 hasConceptScore W4387006048C77088390 @default.
- W4387006048 hasFunder F4320322711 @default.
- W4387006048 hasLocation W43870060481 @default.
- W4387006048 hasOpenAccess W4387006048 @default.
- W4387006048 hasPrimaryLocation W43870060481 @default.
- W4387006048 hasRelatedWork W2795261237 @default.
- W4387006048 hasRelatedWork W3014300295 @default.
- W4387006048 hasRelatedWork W3164822677 @default.
- W4387006048 hasRelatedWork W4223943233 @default.
- W4387006048 hasRelatedWork W4225161397 @default.
- W4387006048 hasRelatedWork W4312200629 @default.
- W4387006048 hasRelatedWork W4360585206 @default.
- W4387006048 hasRelatedWork W4364306694 @default.
- W4387006048 hasRelatedWork W4380075502 @default.
- W4387006048 hasRelatedWork W4380086463 @default.
- W4387006048 isParatext "false" @default.
- W4387006048 isRetracted "false" @default.
- W4387006048 workType "article" @default.