Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387006091> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4387006091 abstract "With the popularity of cloud computing and machine learning, it has been a trend to outsource machine learning processes (including model training and model-based inference) to cloud. By the outsourcing, other than utilizing the extensive and scalable resource offered by the cloud service provider, it will also be attractive to users if the cloud servers can manage the machine learning processes autonomously on behalf of the users. Such a feature will be especially salient when the machine learning is expected to be a long-term continuous process and the users are not always available to participate. Due to security and privacy concerns, it is also desired that the autonomous learning preserves the confidentiality of users' data and models involved. Hence, in this paper, we aim to design a scheme that enables autonomous and confidential model refining in cloud. Homomor-phic encryption and trusted execution environment technology can protect confidentiality for autonomous computation, but each of them has their limitations respectively and they are complementary to each other. Therefore, we further propose to integrate these two techniques in the design of the model refining scheme. Through implementation and experiments, we evaluate the feasibility of our proposed scheme. The results indicate that, with our proposed scheme the cloud server can autonomously re-fine an encrypted model with newly provided encrypted training data to continuously improve its accuracy. Though the efficiency is still significantly lower than the baseline scheme that refines plaintext-model with plaintext-data, we expect that it can be improved by fully utilizing the higher level of parallelism and the computational power of GPU at the cloud server." @default.
- W4387006091 created "2023-09-26" @default.
- W4387006091 creator A5060178337 @default.
- W4387006091 creator A5078474199 @default.
- W4387006091 date "2023-07-01" @default.
- W4387006091 modified "2023-09-26" @default.
- W4387006091 title "Integrating Homomorphic Encryption and Trusted Execution Technology for Autonomous and Confidential Model Refining in Cloud" @default.
- W4387006091 cites W1966731635 @default.
- W4387006091 cites W1979120705 @default.
- W4387006091 cites W2608855258 @default.
- W4387006091 cites W2616901112 @default.
- W4387006091 cites W2701059868 @default.
- W4387006091 cites W2765200655 @default.
- W4387006091 cites W2794888826 @default.
- W4387006091 cites W2807403537 @default.
- W4387006091 cites W2889746123 @default.
- W4387006091 cites W2949140995 @default.
- W4387006091 cites W2955401130 @default.
- W4387006091 cites W2965929808 @default.
- W4387006091 cites W2969373235 @default.
- W4387006091 cites W3019884349 @default.
- W4387006091 cites W3083249310 @default.
- W4387006091 cites W3106542468 @default.
- W4387006091 cites W3162910548 @default.
- W4387006091 cites W3173128495 @default.
- W4387006091 cites W3210684657 @default.
- W4387006091 cites W4281868451 @default.
- W4387006091 doi "https://doi.org/10.1109/cloud60044.2023.00071" @default.
- W4387006091 hasPublicationYear "2023" @default.
- W4387006091 type Work @default.
- W4387006091 citedByCount "0" @default.
- W4387006091 crossrefType "proceedings-article" @default.
- W4387006091 hasAuthorship W4387006091A5060178337 @default.
- W4387006091 hasAuthorship W4387006091A5078474199 @default.
- W4387006091 hasConcept C111919701 @default.
- W4387006091 hasConcept C120314980 @default.
- W4387006091 hasConcept C148730421 @default.
- W4387006091 hasConcept C158338273 @default.
- W4387006091 hasConcept C17744445 @default.
- W4387006091 hasConcept C199539241 @default.
- W4387006091 hasConcept C31258907 @default.
- W4387006091 hasConcept C38652104 @default.
- W4387006091 hasConcept C41008148 @default.
- W4387006091 hasConcept C46934059 @default.
- W4387006091 hasConcept C48044578 @default.
- W4387006091 hasConcept C77088390 @default.
- W4387006091 hasConcept C79974875 @default.
- W4387006091 hasConcept C92717368 @default.
- W4387006091 hasConcept C93996380 @default.
- W4387006091 hasConceptScore W4387006091C111919701 @default.
- W4387006091 hasConceptScore W4387006091C120314980 @default.
- W4387006091 hasConceptScore W4387006091C148730421 @default.
- W4387006091 hasConceptScore W4387006091C158338273 @default.
- W4387006091 hasConceptScore W4387006091C17744445 @default.
- W4387006091 hasConceptScore W4387006091C199539241 @default.
- W4387006091 hasConceptScore W4387006091C31258907 @default.
- W4387006091 hasConceptScore W4387006091C38652104 @default.
- W4387006091 hasConceptScore W4387006091C41008148 @default.
- W4387006091 hasConceptScore W4387006091C46934059 @default.
- W4387006091 hasConceptScore W4387006091C48044578 @default.
- W4387006091 hasConceptScore W4387006091C77088390 @default.
- W4387006091 hasConceptScore W4387006091C79974875 @default.
- W4387006091 hasConceptScore W4387006091C92717368 @default.
- W4387006091 hasConceptScore W4387006091C93996380 @default.
- W4387006091 hasLocation W43870060911 @default.
- W4387006091 hasOpenAccess W4387006091 @default.
- W4387006091 hasPrimaryLocation W43870060911 @default.
- W4387006091 hasRelatedWork W1596010778 @default.
- W4387006091 hasRelatedWork W1715020218 @default.
- W4387006091 hasRelatedWork W2182566061 @default.
- W4387006091 hasRelatedWork W2240063513 @default.
- W4387006091 hasRelatedWork W2364921833 @default.
- W4387006091 hasRelatedWork W2385146268 @default.
- W4387006091 hasRelatedWork W2908790200 @default.
- W4387006091 hasRelatedWork W3119182752 @default.
- W4387006091 hasRelatedWork W3181110568 @default.
- W4387006091 hasRelatedWork W4310607303 @default.
- W4387006091 isParatext "false" @default.
- W4387006091 isRetracted "false" @default.
- W4387006091 workType "article" @default.