Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387006311> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4387006311 abstract "False Data Injection Attack (FDIA) has become a growing concern for modern cyber-physical power systems. Existing data-driven FDIA detection methods are typically based on identifying abnormal spatiotemporal correlation patterns in measurement data, whose accuracy may degrade with the continuous drift of data distributions over the long-term application. In addition, the use of black-box models with bad interpretability may make it difficult to precisely locate manipulated measurements. This paper proposes a bi-level framework based on causal learning to detect and locate FDIAs. The lower level applies a causal inference algorithm, X-Learner, to generate causality matrices to unveil causal relationships between different measurements. The upper level then utilizes a spectral-embedded one-class support vector machine to detect FDIAs and a calibrated eigenvector centrality metric to identify attacked measurements. Compared with correlation analysis, causal learning is more robust against the variation of data distributions as it detects FDIAs based on highly abstracted physical causality. Besides, thanks to the inherent topological implication of causality matrices, causal learning also exhibits stronger potential in FDIA localization. The performance of the proposed framework is validated through experiments on the IEEE 39-bus system." @default.
- W4387006311 created "2023-09-26" @default.
- W4387006311 creator A5007598993 @default.
- W4387006311 creator A5035317975 @default.
- W4387006311 creator A5039081992 @default.
- W4387006311 creator A5071363803 @default.
- W4387006311 creator A5080386912 @default.
- W4387006311 date "2023-07-16" @default.
- W4387006311 modified "2023-09-27" @default.
- W4387006311 title "Interpretable Detection and Localization of False Data Injection Attacks Based on Causal Learning" @default.
- W4387006311 cites W2038651258 @default.
- W4387006311 cites W2143117649 @default.
- W4387006311 cites W2312446965 @default.
- W4387006311 cites W2332912277 @default.
- W4387006311 cites W2624816748 @default.
- W4387006311 cites W2797025128 @default.
- W4387006311 cites W2921172367 @default.
- W4387006311 cites W2991361875 @default.
- W4387006311 cites W3003137894 @default.
- W4387006311 cites W3003882150 @default.
- W4387006311 cites W3013246316 @default.
- W4387006311 cites W3088682896 @default.
- W4387006311 cites W3114876949 @default.
- W4387006311 cites W3159817879 @default.
- W4387006311 cites W3198812356 @default.
- W4387006311 cites W4288684966 @default.
- W4387006311 doi "https://doi.org/10.1109/pesgm52003.2023.10253166" @default.
- W4387006311 hasPublicationYear "2023" @default.
- W4387006311 type Work @default.
- W4387006311 citedByCount "0" @default.
- W4387006311 crossrefType "proceedings-article" @default.
- W4387006311 hasAuthorship W4387006311A5007598993 @default.
- W4387006311 hasAuthorship W4387006311A5035317975 @default.
- W4387006311 hasAuthorship W4387006311A5039081992 @default.
- W4387006311 hasAuthorship W4387006311A5071363803 @default.
- W4387006311 hasAuthorship W4387006311A5080386912 @default.
- W4387006311 hasConcept C119857082 @default.
- W4387006311 hasConcept C121332964 @default.
- W4387006311 hasConcept C124101348 @default.
- W4387006311 hasConcept C127413603 @default.
- W4387006311 hasConcept C149782125 @default.
- W4387006311 hasConcept C154945302 @default.
- W4387006311 hasConcept C158600405 @default.
- W4387006311 hasConcept C176217482 @default.
- W4387006311 hasConcept C21547014 @default.
- W4387006311 hasConcept C2781067378 @default.
- W4387006311 hasConcept C33923547 @default.
- W4387006311 hasConcept C41008148 @default.
- W4387006311 hasConcept C62520636 @default.
- W4387006311 hasConcept C64357122 @default.
- W4387006311 hasConcept C67186912 @default.
- W4387006311 hasConcept C77088390 @default.
- W4387006311 hasConceptScore W4387006311C119857082 @default.
- W4387006311 hasConceptScore W4387006311C121332964 @default.
- W4387006311 hasConceptScore W4387006311C124101348 @default.
- W4387006311 hasConceptScore W4387006311C127413603 @default.
- W4387006311 hasConceptScore W4387006311C149782125 @default.
- W4387006311 hasConceptScore W4387006311C154945302 @default.
- W4387006311 hasConceptScore W4387006311C158600405 @default.
- W4387006311 hasConceptScore W4387006311C176217482 @default.
- W4387006311 hasConceptScore W4387006311C21547014 @default.
- W4387006311 hasConceptScore W4387006311C2781067378 @default.
- W4387006311 hasConceptScore W4387006311C33923547 @default.
- W4387006311 hasConceptScore W4387006311C41008148 @default.
- W4387006311 hasConceptScore W4387006311C62520636 @default.
- W4387006311 hasConceptScore W4387006311C64357122 @default.
- W4387006311 hasConceptScore W4387006311C67186912 @default.
- W4387006311 hasConceptScore W4387006311C77088390 @default.
- W4387006311 hasFunder F4320321001 @default.
- W4387006311 hasLocation W43870063111 @default.
- W4387006311 hasOpenAccess W4387006311 @default.
- W4387006311 hasPrimaryLocation W43870063111 @default.
- W4387006311 hasRelatedWork W2898663848 @default.
- W4387006311 hasRelatedWork W3006943036 @default.
- W4387006311 hasRelatedWork W4200511449 @default.
- W4387006311 hasRelatedWork W4206534706 @default.
- W4387006311 hasRelatedWork W4229079080 @default.
- W4387006311 hasRelatedWork W4283763552 @default.
- W4387006311 hasRelatedWork W4362655380 @default.
- W4387006311 hasRelatedWork W4385957992 @default.
- W4387006311 hasRelatedWork W4385965371 @default.
- W4387006311 hasRelatedWork W4386025632 @default.
- W4387006311 isParatext "false" @default.
- W4387006311 isRetracted "false" @default.
- W4387006311 workType "article" @default.