Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387008148> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4387008148 endingPage "114217" @default.
- W4387008148 startingPage "114217" @default.
- W4387008148 abstract "A set S of vertices of a graph G is a geodetic set if every vertex of G lies in a shortest path between some pair of vertices of S. The Minimum Geodetic Set (MGS) problem is to find a geodetic set with minimum cardinality of a given graph. A grid embedding of a graph is a set of points in two dimensions with integer coordinates such that each point in the set represents a vertex of the graph and, for each edge, the points corresponding to its endpoints are at Euclidean distance 1. A graph is a partial grid if it has a grid embedding. In this paper, we first prove that Minimum Geodetic Set remains NP-hard even for subcubic partial grids of arbitrary girth. This jointly strengthens three existing hardness results: for bipartite graphs (Dourado et al. 2010 [11]), subcubic graphs (Bueno et al. 2018 [4]), and planar graphs (Chakraborty et al. 2020 [6]). The area of an internal face is the number of integer points lying on the boundary or interior of the face. A graph is a solid grid if it has a grid embedding such that all interior faces have area exactly four. To complement the above hardness result, we design a linear-time algorithm for Minimum Geodetic Set on solid grids, improving on a 3-approximation algorithm by Chakraborty et al. (2020) [6]. Our results hold for Edge Geodetic Set as well. A set S of vertices of a graph G is a geodetic set if every edge of G lies in a shortest path between some pair of vertices of S. The Minimum Edge Geodetic Set (MEGS) problem is to find an edge geodetic set with minimum cardinality of a given graph. As corollaries, we obtain that MEGS remains NP-hard on partial grids and is linear-time solvable on solid grids." @default.
- W4387008148 created "2023-09-26" @default.
- W4387008148 creator A5035473225 @default.
- W4387008148 creator A5071862044 @default.
- W4387008148 creator A5077797162 @default.
- W4387008148 date "2023-11-01" @default.
- W4387008148 modified "2023-09-30" @default.
- W4387008148 title "Algorithms and complexity for geodetic sets on partial grids" @default.
- W4387008148 cites W191877893 @default.
- W4387008148 cites W1971244706 @default.
- W4387008148 cites W1973773715 @default.
- W4387008148 cites W1974224894 @default.
- W4387008148 cites W1989650529 @default.
- W4387008148 cites W1996471450 @default.
- W4387008148 cites W2026546284 @default.
- W4387008148 cites W2038715674 @default.
- W4387008148 cites W2047176418 @default.
- W4387008148 cites W2063572899 @default.
- W4387008148 cites W2064260475 @default.
- W4387008148 cites W2102217150 @default.
- W4387008148 cites W2110486245 @default.
- W4387008148 cites W2147243846 @default.
- W4387008148 cites W2791124391 @default.
- W4387008148 cites W2805872963 @default.
- W4387008148 cites W2970850752 @default.
- W4387008148 cites W3207271212 @default.
- W4387008148 cites W4280652960 @default.
- W4387008148 doi "https://doi.org/10.1016/j.tcs.2023.114217" @default.
- W4387008148 hasPublicationYear "2023" @default.
- W4387008148 type Work @default.
- W4387008148 citedByCount "0" @default.
- W4387008148 crossrefType "journal-article" @default.
- W4387008148 hasAuthorship W4387008148A5035473225 @default.
- W4387008148 hasAuthorship W4387008148A5071862044 @default.
- W4387008148 hasAuthorship W4387008148A5077797162 @default.
- W4387008148 hasConcept C114614502 @default.
- W4387008148 hasConcept C118615104 @default.
- W4387008148 hasConcept C132525143 @default.
- W4387008148 hasConcept C145580432 @default.
- W4387008148 hasConcept C146661039 @default.
- W4387008148 hasConcept C197657726 @default.
- W4387008148 hasConcept C203776342 @default.
- W4387008148 hasConcept C205649164 @default.
- W4387008148 hasConcept C22149727 @default.
- W4387008148 hasConcept C33923547 @default.
- W4387008148 hasConcept C58640448 @default.
- W4387008148 hasConcept C58754882 @default.
- W4387008148 hasConcept C80899671 @default.
- W4387008148 hasConceptScore W4387008148C114614502 @default.
- W4387008148 hasConceptScore W4387008148C118615104 @default.
- W4387008148 hasConceptScore W4387008148C132525143 @default.
- W4387008148 hasConceptScore W4387008148C145580432 @default.
- W4387008148 hasConceptScore W4387008148C146661039 @default.
- W4387008148 hasConceptScore W4387008148C197657726 @default.
- W4387008148 hasConceptScore W4387008148C203776342 @default.
- W4387008148 hasConceptScore W4387008148C205649164 @default.
- W4387008148 hasConceptScore W4387008148C22149727 @default.
- W4387008148 hasConceptScore W4387008148C33923547 @default.
- W4387008148 hasConceptScore W4387008148C58640448 @default.
- W4387008148 hasConceptScore W4387008148C58754882 @default.
- W4387008148 hasConceptScore W4387008148C80899671 @default.
- W4387008148 hasLocation W43870081481 @default.
- W4387008148 hasOpenAccess W4387008148 @default.
- W4387008148 hasPrimaryLocation W43870081481 @default.
- W4387008148 hasRelatedWork W1621490777 @default.
- W4387008148 hasRelatedWork W2010333092 @default.
- W4387008148 hasRelatedWork W2030319170 @default.
- W4387008148 hasRelatedWork W2043287068 @default.
- W4387008148 hasRelatedWork W2104330975 @default.
- W4387008148 hasRelatedWork W2611334166 @default.
- W4387008148 hasRelatedWork W2798477366 @default.
- W4387008148 hasRelatedWork W3095553836 @default.
- W4387008148 hasRelatedWork W4285261572 @default.
- W4387008148 hasRelatedWork W4362737182 @default.
- W4387008148 hasVolume "979" @default.
- W4387008148 isParatext "false" @default.
- W4387008148 isRetracted "false" @default.
- W4387008148 workType "article" @default.